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Motivation

* Predict a kinematic region where beam spin asymmetry is non-zero
* Requires non-zero imaginary part of a form factor
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Plan of attack

e Use LFD. Compute the +,-, perpendicular components of J5 for a
given kinematics (boson loop diagrams)

* Obtain confidence in numerical result by checking that the
divergence of the current vanishes

 Compare the real and imaginary components of the current to
construct system of equations to solve for the real and imaginary
components of F1 and F2.

* Repeat at varying Q”"2, x, t values



Boson loop... HUh?

* Fermion loop is difficult. This is a “stepping stone” to tackling the
more realistic model.

* For the boson loop, we will use a derivative coupling at the virtual
photon vertex, the identity operator at the scalar meson vertex, and a
constant vertex function for the hadronic vertices

* This is still not going to be easy to evaluate!
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FIG. 1: The photon comes in with momentum g, the target initially is p, the final state meson has momentum ¢’, and the final
target has momentum p’ = p — A. [ also introduce d = p+ ¢. In this note I will use M;, M., m. m. to denote the masses of
the target, scalar meson, boson propagator, and spectator boson propagator, respectively.
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Integration over |*-: Depends on the position of the poles!
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Opportunity to check numerical work

* Do the integrands within each channel match at the boundaries of
the regions?

e At |"+ = -g”+, gp”™+, \Delta™+, and \delta™+, does the sum from the 3
channels match from the “left” and the “right”?



[+ Integration

* Before, the poles only depended on one integration variable
* Now there can be poles that are functions of both |*perp and \psi
* Need to find terms causing poles, and find solutions
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Note: the + signs in the definitions of as,a;, and ag are a little tricky. If there is a subscript, match it to the

appropriate [, . If there is no subscript, it depends on the sign of both. Same sign means take the top of the + or
F, different sign means take the bottom.



How to find which terms cause poles?

* For a while, | would create animations of 3D plots, but since then
have simply tried to brute-force Nintegrate and if | got error
messages, assumed a pole problem occurred

* After getting the error messages, looked at each denominator term
and visually searched for contours that crossed O



[+ Integration

* Poles depend on which term is causing the pole, the values of the
kinematics, and are functions of the integration variables

* Need to split the integration region into four possibilities (if just one
term causes poles):

* Region |I: Where double poles occur. | tried to make this region empty by
choosing appropriate kinematics.

* Regions Il and Ill: Where one simple pole exists, but the other is outside the
bounds of integration for a given [*perp and \psi range

* Region IV: Where two simple poles exist



C. Treating the case of one simple pole or no poles

Suppose one pole, say [T exists within the integration range. Then the integral can be evaluated as
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For better numerical accuracy, | actually need to place the boundary of integration at the pole and do two principal
value integrations



B. Treating the case of two simple poles

If two simple poles exist, then the integral just needs to be split into two parts. Using the real line version of the
Sokhotski Plemelj theorem, I can write
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For better numerical accuracy, | actually need to split the integrals in Equation 23 into 3 integrals, placing the
boundaries of the integrals at the singular values



Example: Handling a pole in S-channel Region Il

Clear[e&]
e = 0;
Q = 3

Mt = 4; (* Target mass =)
Ms = ©.98; (* Meson mass =)
xBj ©.45; (* Bjorken x %)
Egp = 1.68; (= Meson energy =)

¢ =0; (* Lepton-hadron plane angle )
m = 1; (+ Light boson propagator mass =)
ms = 3; (x "Bottom line" heavy boson propagator mass )

v = Q"2/ (2Mt*xBj); (+ Virtual photon energy =)

e

ArcCos [Solve [ ( (mlfdot [plf - alf, plf-alf]) /. {Cos[®] -» cos8}) = Mt"2, cose][[1l, 1, 2]]1;
(* Angle between virtual photon 3-momentum (z-axis) and produced meson. =x)

kinvalues =
Gr‘id[{{“Qz", "e", "t", "|t|/Q®", "gplf‘", "-gqlf'", “"alf'", "s1f'", “pl'F*“},
{Q"2, e, t, Abs[t]/Q"2, qplf[[1]], -qLlf[[1]], Alf[[1]], &81f[[1]], N[plf[[1]1]]1}}, Frame - All]

mlfdot [qplf, qplf] -Ms~2 (+ Should be 6 +)
(mlfdot [plf - Alf, plf-aAlf]) - Mt*2 (+ Should be 0@ =)
( (plf - Alf) + qplf) - (plf +qlf) (» Should be a @ vector %)

Q? o t t|/Q? gplf* —qlf* alf? S1F° plf*
9 |2.75716 | -6.56 |©.728889 |©.293482 (©.993573 |1.28706 |1.83485 |2.82843
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S-Channel Region 3 pole term: (Lm[-plf]-lm[glf])

3= (* S-channel Region III )

Lmplfll[lperp , ¥ , Llplus 1 = (Lm[-plf] -11);

Lmplflmglf [Lperp , # , Lplus_ ] = (Lm[-plf] - Im[qlf]);

Lmplflmalf[Llperp , # , Lplus 1 = (Lm[-plf] - Im[-alf]);

Animate [Plot3D[ {Lmplfll[lperp, y, lplus], Lmplflmglf[lperp, ¥, lplus], Lmplflmalf[lperp, ¥, lplus], @}, {lperp, O, 2},
{1plus, alf[[1]], N[plf[[1]]]}, PlotStyle » {Blue, Red, Green, Black}], {¥, ©, 2Pi, 0.2}]

wl b =]z [

2n

For all values of \psi, only the red plane has a contour that crosses 0, the black surface



Difficulties with defining geometric regions to
numerically integrate over

DPRSIII1 = ImplicitRegion[lplusplus[lperp, i, a2sIIIlq, alsIIIlq[lperp, ], a@sIIIlq[lperp, #)1]1[[2, 2, 1]] = @ && lplusplus[lperp, i, a2sIII1qg, alsIIIlq[lperp, ¥), a@sIIIiq([lperp, ¥]1[[2, 2, 1]] < O&E
1plusplus[lperp, ¥, a2sIIIlq, alsIIIlq[lperp, ], a@sIIIlq[lperp, 1] < N[plf[[1]]], {{lplus, Alf[[1]], plf[[1]]}, {lperp, @, Infinity}, {¥, @, 2Pi}}];

(# Double pole region for S-channel Region III integrand 1. I really want this to be an empty region! =)

DSPRsIII1 = ImplicitRegion[lplusplus[lperps ¥, a2sIIIlq, alsIIIlq[lperp, %], a@sIIIiq[lperp, #]1]10[[25 25 1]] > @ && lplusplus[lperp, ¥, a2sIIIlq, alsIIIiq[lperp, ], a@sIIIlq[lperp, ¥]] < N[plf[[1])]] &&
ALf[[1])] = lplusminus[lperp, &, a2sIIIlq, alsIIIiq[lperp, ¥], a@sIIIlq([lperp, %11, {{lplus, alf[[1]], plf([1]])}s {lperp, @, Imfinity}, {¢, @y, 2Pi}}];

(# Variable notation: double simple pole region for the S-channel region III integrand 1. =)

sIIT1 = ImplicitRegion[lperpz @ || lperp <@, {{lplus, alf[[1]]), plf[[1]]1}, {lperp, @, Infinity}, {¢, @, 2Pi}}]; (+ Putting in a region argument that is always true, I don't know how else to define an ImplicitRegion =)

(# I know that lpluslplus and lplusminus are real and in range when lperp=1.4 and #=1 from the above. I want to check for the non-emptiness of DSPRsSIII1 by seeing if this point is in fact in that region!=s)

{2, 1.4, 1} € DSPRsSIII1 (% Should return True =)
{2, 98.85, 1} & DSPRsIII1 (% Should return False =)

RegionEqual [DPRsIII1, EmptyRegion[3]] (+ If this is True, there are no double poles! «)
DiscretizeRegion [DSPRSIII1] (% This needs to give me some output without an error otherwise there is no hope I can numerically integrate over this region =)

DiscretizeRegion[sIII1] (+ Same here as I'm going to effectively use this to define the region that I haven't integrated over by the end =)

= True

= False

= True

| need to put in enough arguments to correctly specify my regions, but few enough and simple enough arguments that
Mathematica is able to automatically discretize my region! If it fails to discretize, there is no hope that it can numerically
Integrate the region. | also want to make sure no double poles occur: notice how my Iplusplus arguments are functions
of functions of Iperp, \psi
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tplussIIIplus[lplus, lperp, ]

partl = I\IIntegrate[]per‘p* 1
1plus - lplusminus [ lperp, ¥, a2sIII1q, alsIIIlq[lperp, #], a@sIIIiq[lperp, #]]

{1plus, lperp; ¥} € ImplicitRegion[lplusplus[lperp, ¥, a2sIIIlqg, alsIIIlq[lperp, #), a@sIIIlq[lperpy, ¥)]1[[2s 2, 1]] > © && lplusplus[lperp, ¥, a2sIIIlq, alsIIIlq[lperps #], a@sIIIlq[lperp, #]] < N[plf[[1]]] &&
aAlf[[1]] = lplusminus[lperp, 4, a2sIIIlqy alsIIIlq[lperps ¥y a@sIIIlq[lperpy #11s {{lplus, alf[[1]], (lplusminus[lperp, ¥, a2sIII1q, alsIIIlq[lperp, %], a@sIIIlq[lperp, &]])}s {lperp, @, Infinity}, {4, @; 2Pi}}],

Method -+ {"SymbolicDomainDecomposition™, Method -+ {"GlobalAdaptive™, "MaxErrorIncreases™ = 2660}}];

== Nintegrate: Mumerical integration converging too slowly; suspect one of the following: singularity, value of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

cision is insufficient for the specified precision goal; the integrand is highly oscillatory or it is not a

== Nintegrate: The global error of the s gy GlobalAdaptive has inc

(piecewise) smooth function; or the true value of the integral is 0. Increas 70993281 for the integral and error estimates.

In case that’s too small to read: | tried to numerically integrate over a region that had the pole on the boundary of the region
of integration, and | was somewhat successful. | got some value around 10 with an error of about 0.2. | tried increasing the
value of MaxErrorincreases, but this heavily increases integration time with minimal error reduction.

| suspect that this is because the integrand is a “nasty” function...

(iii) The integration is badlv conditioned [KrUebo8]. For example, the reason might be that the integrand
is defined bv complicated expressions or in terms of approximate solutions of mathematical problems

(such as differential equations or nonlinear algebraic equations).

The strategy "GlobalAdaptive" keeps track of the number of times the total error estimate has not
decreased after the bisection of the region with the largest error estimate. When that number becomes

bigger than the value of the "GlobalAdaptive" option "MaxErrorincreases", the integration stops with a

message (Nintegrate::eincr).

The default value of "MaxErrorincreases” is 400 for one-dimensional integrals and 2oo0o0 for

multidimensional integrals.



| could increase the WorkingPrecision but...

* | put more digits into the kinematics variables, which effectively
raised WorkingPrecision from 4->16. The error dropped from 0.17 to
0.12. | could keep going, but...

Expect solution times to increase exponentially as a function of working precision:

deqn = Block[{y = 15/100, € =3/10, w=1),
{x"[t] + v x"[t] - x[t] + X[t] *3 == € Cos[w t], X[0] == 1, x'[0] == O};

times = Table[{wp, First[Timing[First{x /. NDSolve[degn, x, {t, 0, 100},
WorkingPrecision = wp, Method - "StiffnessSwitching"1I11},
{wp, Join[{MachinePrecision}, Range[20, 160, 10]]}];
TableForm[times, TableHeadings = {{}, {"Precision”, "Timing"}}]

Precision Timing
MachinePrecision 0.0156001
20 0.124801
30 0.234002
40 0.312002
50 0.499203
60 0.670804
T0 0.936006
80 1.27921
90 1.65361
100 2.19561
110 2.85482
120 3.52562
130 4,50843
140 5.38203
150 6.50524
160 T.98725




Setting aside for now numerical errors, there
IS another problem

C-Channel Region Il Integrand 1: Two denominators contribute poles!

-ZD'I | ARESIEIR =
1.4




How to handle this?

* I’d need to split my region into a plethora of regions.

Region |: Quadruple-pole. Want this region to be 0.

Region I, I, IV, V: triple-poles coming from a double pole from either term
and a simple pole in the other term, and the two coinciding. 4 possibilities,
one for each term that doesn’t contribute to the triple pole

Regions VI-XI: Double pole regions. There are 4-choose-2 = 6 possibilities.
Region Xll: Four simple poles

Regions XlIlI-XVI: Three simple poles, one region for each term that doesn’t
contribute

Regions XVII-XXII: Two simple poles. Again 4-choose-2 = 6 possible combos.
Regions: XXIII-XXVI: One simple pole.
Region XXVII: No poles



Can | avoid this?

* This is significantly harder than the 1+1 case, where the poles were
just functions of the kinematics and were just numbers from which
you could pick values such that you could ensure 4 simple poles, for

Instance.

* I’'ve sought kinematics, mass values that give me no plots with two or
more terms from a denominator contributing, but no luck so far.

* I'd like to avoid this; would need to check the 6 possible double pole
regions to ensure they’re empty (might not be easy), then integrate
over the remaining 1+4+6+4+1 = 16 regions with the four simple pole
region having 9 integrals. It would take a while to code this, then also
check to make sure | didn’t make a mistake somewhere.




The difficulty of handling the double pole

A. Treating the case of the double pole

Note: I will seek kinematics that completely avoid double poles. However, I thought I would try to make some
headway in regards to potentially treating the issue in the future.

In the case that EI = [T, there is a double pole of the form
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In the first step, I multiplied numerator and denominator by y? — ie, then I split it into two parts and multiplied the
first term by /7, and the second term by y?/y?. In the second step, I defined ¢’ = /e and since y is always a finite
value the limit is the same as the original expression after adding 2y2¢’? to the denominator. In the third step you
can check that the derivative of the terms in square brackets, multiplied by €' /2y, is equal to the previous step’s term.
In the final step I effectively multiplied by yﬁj which again gives a term with the same limit as the original expression
in the first line as €’ — 0 due to y being finite. Now we can use the identities

€

d(z) =lim ————— = lim (%E |$|E—1) (17)

e—0 T (..."‘32 -+ 62) e—0

4
to simplify things. I also note that the term ?y_’? goes to 0 when |y| < € and goes to 1 when |y| > € and is symmetric
about 0, so the second term will be a principal value integration. Putting it all together, I have
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In the first integral I used the fact that I know y is negative for the whole range so I could send y — — |y| and
substitute for d(y), and for the second integral we similarly know y is positive so y — |y|. As far as I'm aware, the
validity of the expression holds so long as f(y + EI) is a continuous function on the real line. When I integrate by
parts, for the first integral for instance, I get

[ a5 o)+ 1) = 5060w + 1) L ] g B
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The first term is obviously wery badly divergent. However, let’s convert the delta functions back to the limiting
procedure representation, and consider the following prescription:

o / " (1+ ff(;l e T _[ dyﬁf;;y) WSy +) - &/ dy%&fwﬂy}f(y +h)
o + I (20
P / ﬂ.!.y.,i”(y:; 1)
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Once again integrating by parts the first two terms become
~iZ tm lé(—é)é(—i)f(li) R GRGYGIE (5( o) 5(5)8255))]
il { (reemsa) 10~ (rgivm) 10 [(rrgrea) - (rrvsan)] a0 }
=0 (21)
Everything cancels to zero! Another way of seeing the cancelation is by using
S(g(a) =3 % (22)

with g(z) = {—z, x} we immediately have §(x) = §(—z) and the cancellation can be seen directly from the first line.



Even if | did everything correctly...

* Principal value integrals at least in Mathematica can’t be handled
numerically if the pole diverges worse than 1/Sqrt[x*2+y”2+...]. I'm
already having trouble with the principal value integrations with just

a. .7

one factor of “y” in the denominator.




Looking back at the big picture

* 36 integrals to evaluate: some of them have terms in the
denominators that cause poles. For my current kinematics, this
happens for 18 of them, meaning | need to check 6 terms, each with
3 denominators that may be causing the poles

* Let’s say | succeed in evaluating all these things. Then what?



Solve for the Form Factors!

]i‘ ' Fl(q")A“ q-Aqgh)
FB((P-q+q7)A" — q- A(P* + ¢")]

Left hand side: take, say, \mu = +, and separate into Re and Im parts. Both of these are numerically “measured” quantities
Right hand side: Expand F1 and F2 into their Re and Im parts; these are the 4 unknowns. The tensor parts are just numbers for
a chosen kinematics.

Repeat for \mu =1, 2, -. We now have 4 equations for 4 unknowns: Re[F1], Im[F1], Re[F2], Im[F2]

Repeat for other values of Q”2, x, t. Hopefully we find a kinematic regime where imaginary parts of form factors show up,
but actually we’d like to extend this method to the fermion loop based off what we’ve learned from doing the boson loop!



Concluding remarks

* 1+1 dimension case has been evaluated by Dr. Ji and Yongwoo;
however there is only 1 form factor there and no beam asymmetry

e Short term goal: finish this evaluation for a given Q”2

* Near term goal: Repeat calculations for a range of Q*2 (and x, t,
ideally within a kinematics achievable by J-Lab)

* Long term goals: Extend method to fermion loop, work on the
nucleon target, etc.



