
Evaluation of the Boson Loop Diagram for
Scalar Meson Electroproduction off the

Scalar Target in 3+1 Dimensions using Light
Front Dynamics

Andrew Lundeen

NC State University

October 4, 2019

Motivation

• Predict a kinematic region where beam spin asymmetry is non-zero

• Requires non-zero imaginary part of a form factor

Plan of attack

• Use LFD. Compute the +,-, perpendicular components of for a
given kinematics (boson loop diagrams)

• Obtain confidence in numerical result by checking that the
divergence of the current vanishes

• Compare the real and imaginary components of the current to
construct system of equations to solve for the real and imaginary
components of F1 and F2.

• Repeat at varying Q^2, x, t values

Boson loop… Huh?

• Fermion loop is difficult. This is a “stepping stone” to tackling the
more realistic model.

• For the boson loop, we will use a derivative coupling at the virtual
photon vertex, the identity operator at the scalar meson vertex, and a
constant vertex function for the hadronic vertices

• This is still not going to be easy to evaluate!

Integration over l^-: Depends on the position of the poles!

S-channel example:

Opportunity to check numerical work

• Do the integrands within each channel match at the boundaries of
the regions?

• At l^+ = -q^+, qp^+, \Delta^+, and \delta^+, does the sum from the 3
channels match from the “left” and the “right”?

l^+ Integration

• Before, the poles only depended on one integration variable

• Now there can be poles that are functions of both l^perp and \psi

• Need to find terms causing poles, and find solutions

How to find which terms cause poles?

• For a while, I would create animations of 3D plots, but since then
have simply tried to brute-force Nintegrate and if I got error
messages, assumed a pole problem occurred

• After getting the error messages, looked at each denominator term
and visually searched for contours that crossed 0

l^+ Integration

• Poles depend on which term is causing the pole, the values of the
kinematics, and are functions of the integration variables

• Need to split the integration region into four possibilities (if just one
term causes poles):
• Region I: Where double poles occur. I tried to make this region empty by

choosing appropriate kinematics.

• Regions II and III: Where one simple pole exists, but the other is outside the
bounds of integration for a given l^perp and \psi range

• Region IV: Where two simple poles exist

For better numerical accuracy, I actually need to place the boundary of integration at the pole and do two principal
value integrations

For better numerical accuracy, I actually need to split the integrals in Equation 23 into 3 integrals, placing the
boundaries of the integrals at the singular values

Example: Handling a pole in S-channel Region III

^ Obviously, there is a problem!

For all values of \psi, only the red plane has a contour that crosses 0, the black surface

Difficulties with defining geometric regions to
numerically integrate over

I need to put in enough arguments to correctly specify my regions, but few enough and simple enough arguments that
Mathematica is able to automatically discretize my region! If it fails to discretize, there is no hope that it can numerically
Integrate the region. I also want to make sure no double poles occur: notice how my lplusplus arguments are functions
of functions of lperp, \psi

In case that’s too small to read: I tried to numerically integrate over a region that had the pole on the boundary of the region
of integration, and I was somewhat successful. I got some value around 10 with an error of about 0.2. I tried increasing the
value of MaxErrorIncreases, but this heavily increases integration time with minimal error reduction.

I suspect that this is because the integrand is a “nasty” function…

I could increase the WorkingPrecision but…

• I put more digits into the kinematics variables, which effectively
raised WorkingPrecision from 4->16. The error dropped from 0.17 to
0.12. I could keep going, but…

Setting aside for now numerical errors, there
is another problem

C-Channel Region II Integrand 1: Two denominators contribute poles!

How to handle this?

• I’d need to split my region into a plethora of regions.
• Region I: Quadruple-pole. Want this region to be 0.
• Region II, III, IV, V: triple-poles coming from a double pole from either term

and a simple pole in the other term, and the two coinciding. 4 possibilities,
one for each term that doesn’t contribute to the triple pole

• Regions VI-XI: Double pole regions. There are 4-choose-2 = 6 possibilities.
• Region XII: Four simple poles
• Regions XIII-XVI: Three simple poles, one region for each term that doesn’t

contribute
• Regions XVII-XXII: Two simple poles. Again 4-choose-2 = 6 possible combos.
• Regions: XXIII-XXVI: One simple pole.
• Region XXVII: No poles

Can I avoid this?

• This is significantly harder than the 1+1 case, where the poles were
just functions of the kinematics and were just numbers from which
you could pick values such that you could ensure 4 simple poles, for
instance.

• I’ve sought kinematics, mass values that give me no plots with two or
more terms from a denominator contributing, but no luck so far.

• I’d like to avoid this; would need to check the 6 possible double pole
regions to ensure they’re empty (might not be easy), then integrate
over the remaining 1+4+6+4+1 = 16 regions with the four simple pole
region having 9 integrals. It would take a while to code this, then also
check to make sure I didn’t make a mistake somewhere.

The difficulty of handling the double pole

Even if I did everything correctly…

• Principal value integrals at least in Mathematica can’t be handled
numerically if the pole diverges worse than 1/Sqrt[x^2+y^2+…]. I’m
already having trouble with the principal value integrations with just
one factor of “y” in the denominator.

Looking back at the big picture

• 36 integrals to evaluate: some of them have terms in the
denominators that cause poles. For my current kinematics, this
happens for 18 of them, meaning I need to check 6 terms, each with
3 denominators that may be causing the poles

• Let’s say I succeed in evaluating all these things. Then what?

Solve for the Form Factors!

Left hand side: take, say, \mu = +, and separate into Re and Im parts. Both of these are numerically “measured” quantities
Right hand side: Expand F1 and F2 into their Re and Im parts; these are the 4 unknowns. The tensor parts are just numbers for
a chosen kinematics.

Repeat for \mu = 1, 2, -. We now have 4 equations for 4 unknowns: Re[F1], Im[F1], Re[F2], Im[F2]

Repeat for other values of Q^2, x, t. Hopefully we find a kinematic regime where imaginary parts of form factors show up,
but actually we’d like to extend this method to the fermion loop based off what we’ve learned from doing the boson loop!

Concluding remarks

• 1+1 dimension case has been evaluated by Dr. Ji and Yongwoo;
however there is only 1 form factor there and no beam asymmetry

• Short term goal: finish this evaluation for a given Q^2

• Near term goal: Repeat calculations for a range of Q^2 (and x, t,
ideally within a kinematics achievable by J-Lab)

• Long term goals: Extend method to fermion loop, work on the
nucleon target, etc.

