LIGHT CONE 2019

LC2019 - QCD ON THE LIGHT CONE: FROM HADRONS TO HEAVY IONS

Eccle Polytechnique, Palaiseau, France

Group Meeting October 18, 2019

100 talks in 4½ days https://indico.cern.ch/event/734913/timetable/#all.detailed		
Facilities	Topics	Theoretical Base
JLAB-EIC	Spectroscopy,	Rel. Bound States
	GPDs,TMDs,	LFD Pedagogy & Issues
	Factorization,	IFD vs. LFD
	& related topics	Euclidean vs. Minkowski
RHIC-LHC	Heavy Ion Collisions,	General Tensor Structure
	Jets,	AdS Holography
	Hadronization,	BLFQ

& related topics

medium modification,

LFQM

&related topics

FRIB

The present and future science program at Jefferson Lab

LIGHT CONE 2019

QCD on the light-cone:

From hadrons to heavy ions

Ecole Polytechnique, Palaiseau, France 16-20 SEPTEMBER 2019

- CEBAF 12 GeV upgrade
- Science & Capabilities
 - Recent highlights
 - Light-cone physics
 - Future projects
 - JLab12 to EIC
 - Summary

Jianwei Qiu Theory Center

JLab12 Scientific Questions

- What is the role of gluonic excitations in the spectroscopy of light mesons? Can these excitations elucidate the origin of quark confinement?
- Where is the missing spin in the nucleon? Is there a significant contribution from valence quark orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through 3D imaging at the femtometer scale?
- What is the relation between short-range N-N correlations, the partonic structure of nuclei, and the nature of the nuclear force?
- Can we discover evidence for physics beyond the standard model of particle physics?

LQCD – beyond the mass spectrum

LQCD/PQCD – hadron/nuclear structure

No "still picture" for hadron's partonic structure:

Quarks and gluons are moving relativistically, color is fully entangled! Partonic structure = "Quantum Probabilities": $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$

High energy probes see partons on the light-cone:

LQCD/PQCD – hadron/nuclear structure

New idea – quasi-PDFs:

$$\tilde{q}(x,\mu^{2},P_{z}) \equiv \int \frac{d\xi_{z}}{4\pi} e^{-ixP_{z}\xi_{z}} \langle P|\overline{\psi}(\xi_{z})\gamma_{z} \exp\left\{-ig\int_{0}^{\xi_{z}} d\eta_{z}A_{z}(\eta_{z})\right\} \psi(0)|P\rangle + \text{UVCT}(\mu^{2}) \qquad \uparrow \mathbf{t}$$
No longer boost invariant + power divergent, ...
Key observation: $(0,z) \longrightarrow (0^{+},\xi^{-})$ when $P_{z} \rightarrow \infty$ $\mathbf{0}$ \mathbf{z}

Complementary idea – "lattice cross section":

Access to large-x region, ... *Neutron PDFs, ... (no free neutron target!)* Meson PDFs, such as pion, kaon, ... More direct access to parton flavor, ...

1st LQCD calculation of pion valence PDFs!

Ji, arXiv:1305.1539

Ζ

LQCD/PQCD/EXP – hadron/nuclear structure

□ Predictive power of QCD – Universality & Global analyses::

arXiv:1905.03788 Submitted to PRL

No modern detector can see quarks and gluons in isolation!

Center for Nuclear Femtography:

What EIC can do, but, HERA & other colliders cannot do?

□ What is so special about the Lepton-Hadron Collider?

Hit the proton with a well-controlled hard probe without breaking it!

Quantum imaging:

- **HERA discovered: 15% of e-p events is diffractive Proton not broken!**
- ♦ US-EIC: 100-1000 times luminosity Critical for 3D tomography!

Quantum interference & entanglement – dual role of hadron spin:

US-EIC: Highly polarized beams – Origin of hadron property: Spin, ... Direct access to chromo-quantum interference!

Nonlinear quantum dynamics – dual role of nuclei:

 US-EIC: Light-to-heavy nuclear beams – Origin of nuclear force, ...
 Catch the transition from chromo-quantum fluctuation to chromo-condensate of gluons, ...
 Emergence of hadrons (femtometer size detector!), – "a new controllable knob" – Atomic weight of nuclei

g

Evolution of heavy-ion collisions

• Description of the heavy-ion collision dynamics from the underlying QCD still challenging

- Bulk dominated by the hydrodynamic expansion
 - Knowledge of the initial state required

Small systems → increased sensitivity to initial state

Early times, Pre-equilibrium

- Early times \rightarrow classical field evolution
- Energy deposition models, based on: CGC.

Non-equilibrium models: QCD kinetic theory,

Chemical composition

- ➔ Production at chemical freeze-out
 - Inelastic collisions cease
 - Abundances of different hadron species fixed
 - Integrated particle yields → conditions at chemical freeze-out
- → Particle yields measured at kinetic freeze-out. Depend on:
 - Initial yields after chemical freeze-out
 - Lifetime of hadronic phase
 - Resonance decays
 - Scattering cross-section of decay products
 - Baryon final state annihilation ?

Thermodynamic properties

15

- Described by statistical/thermal models with grand canonical ensemble.
 - Three parameters: $T_{_{ch}}\!\!\!, \mu_{_B}\!\!\!, V$
- → With increasing $\sqrt{s_{_{NN}}}$:
 - + $\mu_{\scriptscriptstyle B}$ decreases, vanishes at LHC
 - T_{ch} increases up to SPS energies then saturated at ~160 MeV, close to the QGP phase boundary temperature from lattice QCD

ρ_{T} distributions

- → Low ρ_T (< 2,3 GeV):
 - Bulk-matter (collective phenomena) LHC > 95% of the produced particles, non-perturbative QCD regime
- → Intermediate ρ_T :
 - Fragmentation vs recombination
- → High ρ_{T} (> 8-10 GeV):

 $(1/2\pi p_T)d^2N/dp_Tdy$ (GeV⁻²)

10

10

10

10

10

- Hard processes, energy loss
- Hardening of the spectra with centrality

B.Hong,C.Ji,D. Min, PRC73,054901(2006)

QGP: Collectivity in the system

non-central HI collision

- → initial spacial anisotropy → azimuthal anisotropies in particle momentum distributions
- → Fourier expansion:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[(\varphi - \Psi_n)] \right)$$
$$v_n(p_T, y) = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

<u>Azimuthal anisotropy – elliptic fl</u>ow

• Low ρ_{τ} (<2 GeV/c): mass ordering

collective radial flow velocity, isotropic expansion

- $\rho_T \sim 2.5 \text{ GeV/c}$: crossing between v_2 of mesons and baryons
- ρ_T > 2.5~8 GeV/c: baryon-meson grouping baryon v₂ > meson v₂, flow driven by quark content
- Φ meson follows mass ordering at low ρ_T and quark contents at intermediate ρ_T

Hard probes

26

 ω [GeV]

Nature of the "Ridge"

Jet quenching in heavy ion collisions

- Two decades after Bjorken prediction, jet quenching phenomenon was observed at RHIC in the suppression of high-pT hadrons and confirmed at LHC where a strong suppression of 1 TeV jets was observed
- Use jets as test particles to learn about the properties of of the Quark-Gluon-Plasma (QGP)

ع ^ع لا

0.5

Inclusive hadrons

$$R_{AA} \equiv \frac{1}{N_{coll}} \frac{\mathrm{d}N_{AA}/\mathrm{d}p_T}{\mathrm{d}N_{pp}/\mathrm{d}p_T}$$

QUARK-ANTIQUARK POTENTIAL AT HIGH TEMPERATURE

François Gelis, September 2019

Small collision systems and the Electron Ion Collider

Michael Winn

Nuclear physics division, IRFU-CEA

Light-Cone Conference, Palaiseau, 17th of September 2019

- open: which degrees of freedom & scales, "transitions" & thermalisation, role of geometry in coordinate & momentum space, implications for High-Energy-Physics-modelling?
- precision input from the electron ion collider for "initial state" with "point-like" probe:

important for hadronic collisions as constraint

Anatomy of a high-energy collision

Gregory Soyez

Jets and their substructure

- perturbative QCD
- ontrolled, solid
- predictive with genuine theory uncertainties
- **NON-perturbative**
- needs modelling
- model-dependent

LightCone 2019

Monte Carlo generators

Generic picture:

- "all-purpose" (Monte Carlo) Event generators to simulate collisions
- Most used tools in particle physics (Pythia, Herwig, Sherpa, ...)
- Central piece: parton shower (connecting hard to soft perturbative scales)

Convenient representation: the Lund plane

Anatomy of a high-energy collision

Colliders study fundamental interactions at high energy

Frequent tool: Cambridge/Aachen (de-)clustering

Cambridge/Aachen: iteratively recombine the closest pair

Usage: iteratively undo the clustering to study internal jet dynamics Typically: follow the hardest branch (largest p_t or z) What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

• Main idea:

Boosted jet $\Rightarrow p_t \gg m$ $\Rightarrow \rho \equiv \frac{m^2}{p_t^2 R^2} \ll 1$ \Rightarrow expect log ρ coming with α_s \Rightarrow need for all-order resummation

• Example: jet mass with one (soft-and-collinear) gluon emission

$$\mathsf{Prob}_1(>\rho) \simeq \int_0^1 \frac{d\theta^2}{\theta^2} \frac{dz}{z} \frac{\alpha_s C_R}{\pi} \Theta(z\theta^2 > \rho) \simeq \frac{\alpha_s C_R}{2\pi} \log^2(1/\rho)$$

• Use the same Sudakov parametrisation as for "Monte-Carlo generators" seen earlier, but now treat things analytically

High energy scattering in QCD: from low to high Bjorken x

Jamal Jalilian-Marian

Baruch College and CUNY Graduate Center

New York, NY

QCD at high transverse momentum: collinear factorization (twist expansion)

QCD at high energy (CGC):

high gluon density effects

Toward a unified formalism: beyond eikonal approximation

unifying saturation with high p_t (large x) physics?

<u>kinematics of saturation: where is saturation applicable?</u> jet physics, high p_t (polar and azimuthal) angular correlations cold matter energy loss, spin physics,

Low-x world

Radek Žlebčík

- The beyond DGLAP dynamics (BFKL, saturation, k_τ distribution)
- The gluon density can be enhanced by colliding nucleons

The Q² or M² must be within pQCD regime and experimentally accessible low $x \rightarrow high \ energies$

DESY.

Eur.Phys.J. C75 (2015) no.12, 580

Inclusive DIS at HERA

Low-x region

- At small x huge rise of gluon and F_2
- Higher-Q² leads even to steeper rise

Discussed measurements

- 1) Inclusive (D)DIS HERA
- 2) Exclusive production of di-jets & di-photons LHC, Tevatron
- 3) Exclusive J/psi photoproduction HERA, LHC
- 4) Forward jets LHC
- 5) Forward-backward jets LHC
- With current experiment we access up to $x \sim 10^{-5}$
- Indications for BFKL dynamics for several observables
- Saturation?
- High-luminosity data with protons tagged → AFP, CT-PPS
- Future ep experiments
 - \rightarrow LHeC energy frontier
 - \rightarrow EIC luminosity frontier
 - Precision era in low-x?

QCD AT FINITE TEMPERATURE AND DENSITY FROM THE CURCI-FERRARI MODEL

Urko Reinosa*

(based on various collaborations with J. A. Gracey, J. Maelger,

M. Peláez, M. Tissier, J. Serreau and N. Wschebor)

RUNNING COUPLING FROM THE LATTICE

[[]I. L. Bogolubsky, E. M. Ilgenfritz, M. Müller-Preussker,A. Sternbeck, Phys. Lett. B676, 69 (2009).]

IMAGINARY CHEMICAL POTENTIAL

$$\cdots + \sum_{f=1}^{N_f} \int_x \left\{ \bar{\psi}_f (\partial - ig A^a t^a + M_f - i \mu_i \gamma_0) \psi_f \right\}, \text{with } M_f \gg T, \mu$$

Not really physical, but much praised by the lattice community since the sign problem is absent. For us, immense source of data to which we can compare to.

For $\mu_i = (\pi/3)T$, the action admits a new symmetry (Roberge-Weiss), combining center transformations, abelian gauge transformations and charge conjugation.

The Roberge-Weiss (RW) symmetry is known to be broken for large enough temperatures.

The massive gluon and the massless pion

Julien Serreau Université de Paris

& the Montevideo-Paris collaboration J. Maelger, M. Peláez, U. Reinosa M. Tissier, N. Wschebor

The Curci-Ferrari model for infrared QCD Chiral symmetry breaking Pion decay constant Phase diagram at $T, \mu \neq 0$ AID

Samuel Wallon Sorbonne Université

based on works with:

B. Pire (CPhT, Palaiseau), R. Boussarie (BNL, Brookhaven),

L. Szymanowski (NCBJ, Warsaw), G. Duplančić, K. Passek-Kumerički (IRB, Zagreb)

Overview of TMDs

Miguel G. Echevarría

Universidad de Alcalá

Timelike Compton Scattering with CLAS12 at Jefferson Lab

Pierre Chatagnon

Institut de Physique Nucleaire d'Orsay For the CLAS Collaboration

NUCLEON STRUCTURE

Goal: understand 3D (momentum space) and spin structure of nucleons

In theory, all information contained in: ⟨PS|O(ψ,ψ, A^μ) |PS⟩
In practice, color confinement prevents us from calculating them. So?
Lattice or FACTORIZATION THEOREMS

 $\sigma = \sigma_{partonic} \otimes \left[\text{PDFs} / \text{FFs} / \text{Jets} / \text{etc} \right] + \text{power suppressed}$

An overview of baryon-to-meson transition distribution amplitudes: formalism and experimental perspectives

K. Semenov-Tian-Shansky

Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Russia

Spin Physics at Hadron Facilities

Oleg Eyser

BROOKHAVEN NATIONAL LABORATORY

Nucleons & Nuclei

- What is the nature of the spin of the proton?
- How do gluons contribute to the proton spin?
- What is the landscape of the polarized sea in the nucleon?
- What do transverse spin phenomena teach us about the proton structure?
- How can we describe the multi-dimensional landscape of nucleons and nuclei?
- How do quarks and gluons hadronize into final state particles?
- What is the nature of the initial state in nuclear collisions?

The Proton Spin

 $\frac{1}{2} = \Delta \Sigma + \Delta G + L_q + L_G$

Gluon Polarization

- Inclusive jet asymmetries at $\sqrt{s} = 200 \text{ GeV}$ (midrapidity)
- First evidence of non-zero gluon polarization

Beam Spin Asymmetry in the Electroproduction of 0⁻⁺ or 0⁺⁺ Meson off the Scalar Target

Chueng-Ryong Ji North Carolina State University

In collaboration with H.-M.Choi, A.Lundeen, B.Bakker & Y.Choi September 18, 2019

Salient Features

- No interference from Bethe-Heitler process
- BSA of exclusive coherent electroproduction of the π^0 off ⁴He has been measured.
- Data appear consistent with our benchmark BSA prediction for 0⁻⁺ meson production off the scalar target.
- General formulation of hadronic amplitudes in Meson Production off the Scalar Target (0⁺⁺ vs. 0⁻⁺)
- Comparison/Contrast with the leading twist GPD formulation.

Most General Hadronic Tensor for Scalar Target $T^{\mu\nu} = G^{\mu\nu}_{aa'} S_1 + G^{\mu\lambda}_a G^{\nu}_{a'\lambda} S_2 + G^{\mu\lambda}_{a\overline{P}} G_{\overline{P}a'\lambda} S_3$ + $(G_{a\overline{P}}^{\mu\lambda}G_{a'\lambda}^{\nu} + G_{a}^{\mu\lambda}G_{\overline{P}a'\lambda}^{\nu})S_4 + G_{a}^{\mu\lambda}\overline{P}_{\lambda}\overline{P}_{\lambda'}G_{a'}^{\lambda'\nu}S_5$ $G_{aa'}^{\mu\nu} = g^{\mu\nu}q \cdot q' - q'^{\mu}q^{\nu}$ $G_{a}^{\mu\nu} = g^{\mu\nu}q^{2} - q^{\mu}q^{\nu}$ $G_{a'}^{\mu\nu} = g^{\mu\nu} q'^2 - q'^{\mu} q'^{\nu}$ $G_{a\overline{P}}^{\mu\nu} = g^{\mu\nu}q \cdot \overline{P} - \overline{P}^{\mu}q^{\nu}$ $G^{\mu\nu}_{\overline{P}_{q'}} = g^{\mu\nu}q' \cdot \overline{P} - q'^{\mu}\overline{P}^{\nu}$

For $q'^2 = 0$, only $S_{1,} S_2$ and S_4 contribute.

Energy-MomentumTensorand Light ConeOleg TeryaevJINR, Dubna

MAKING SENSE OF THE NAMBU-JONA-LASINIO MODEL

VIA SCALE INVARIANCE

Philip D. Mannheim University of Connecticut

Poincaré constraints on the gravitational

form factors Peter Lowdon (Ecole Polytechnique)

The Energy-Momentum Tensor for massive hadrons Sabrina Cotogno (Institut Polytechnique de Paris)

e-color red, one-color black and one-color white. When used An all-black or all-white version is available for use when the Do not create versions of the logo in other colors or

Light-front quantum mechanics and quantum field theory

W. N. Polyzou

The University of Iowa

Much Ado About Nothing an introduction to the LF vacuum

Matthias Burkardt

New Mexico State 👹

Minkowski space approach to self-energies and scale invariance

Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos – Brazil

