Impact of q_T -dependent Drell-Yan data on pion PDFs

Patrick Barry

Group Meeting 3/27/2020

Outline

- 1. Motivation
- 2. Theory
 - a. DY & LN theory
 - b. q_T -dependent DY theory
- 3. Fitting Methodology
- 4. Results
- 5. Impact of q_T data
- 6. Scale Dependence
- 7. Future works

1. Motivation

Motivation

- QCD allows us to study the structure of protons in terms of partons (quarks, antiquarks, and gluons)
- Use factorization theorems to separate hard partonic physics out of soft, non-perturbative objects to quantify structure

Motivation

What to do:

- Define a structure of nucleons in terms of quantum field theories
- Identify theoretical observables that factorize into non-perturbative objects and perturbatively calculable physics
- Perform global QCD analysis as structures are universal and are the same in all subprocesses

Pions

- Pion is the Goldstone boson associated with chiral symmetry breaking
- Lightest hadron as $\frac{m_{\pi}}{M_N} \ll 1$ and dictates the nature of hadronic interactions at low energies
- Simultaneously a $q \overline{q}$ bound state

Why q_T -dependent Drell-Yan?

- At Leading order in q_T -integrated Drell-Yan, all of the initial quark/antiquark momentum goes directly into producing a virtual photon
- Leading order contributions dominate cross section
- No recoil, no q_T component

Why q_T -dependent Drell-Yan?

• Any recoil must involve a gluon, meaning the leading order diagrams in q_T dependence are of order $\mathcal{O}(\alpha_S)$

Why q_T -dependent Drell-Yan?

- Any recoil must involve a gluon, meaning the leading order diagrams in q_T dependence are of order $\mathcal{O}(\alpha_S)$
- In principle, there should be a better constraint on the gluon PDF

Motivation

- There also has not been a successful analysis of collinear PDFs fit to q_T -dependent data
- Studying the fixed-order perturbative calculation in q_T has connections with transverse momentum dependent PDFs (TMDPDFs)
- The aim is to fit the q_T -dependent Drell-Yan data along with q_T -integrated Drell-Yan and the Leading Neutron data

2. Theory

2a. Drell-Yan & Leading Neutron Theory

P. C. Barry, N. Sato, W. Melnitchouk, and C. -R. Ji, Phys. Rev. Lett. **121**, 152001 (2018).

Drell-Yan (DY)

• p_T integrated DY

$$\frac{d\sigma}{dQ^2 dY} = \frac{4\pi\alpha^2}{3N_C Q^2 S} \sum_{i,j} e_q^2 \int_{x_\pi^0}^1 dx_\pi \int_{x_A^0}^1 dx_A f_i^\pi(x_\pi,\mu) f_j^A(x_A,\mu) \times \frac{d\hat{\sigma}_{i,j}}{dQ^2 dY}(x_\pi,x_A,Q/\mu)$$

Drell-Yan (DY) Definitions

Hadronic variable

$$\tau = \frac{Q^2}{S}$$

 \hat{S} is the center of mass momentum squared of incoming partons

Partonic variable
$$z \equiv \frac{Q^2}{\tau} = \frac{\tau}{\tau}$$

$$z \equiv \frac{Q}{\hat{S}} = \frac{\gamma}{x_1 x_2}$$

Fixed Order Up to NLO Feynman diagrams for LO: $\mathcal{O}(1)$ DY amplitudes in collinear factorization NLO: $\mathcal{O}(\alpha_S)$ Real emissions Virtual Corrections \boldsymbol{q}

LO

LO:
$$\mathcal{O}(1)$$
 $q \rightarrow l^{-}$ l^{+}

$$C_{q\bar{q}} = \delta(1-z)\frac{\delta(y) + \delta(1-y)}{2}$$

- z = 1 corresponds
 to partonic
 threshold
- All \hat{S} is equal to Q^2
- All energy of hard partons turns into virtuality of photon

NLO Virtual

- Virtual corrections at NLO are proportional to $\delta(1-z)$
 - Exhibit Born kinematics

$$C_{q\bar{q}}^{\text{virtual}} = \delta(1-z)\frac{\delta(y) + \delta(1-y)}{2} \left[\frac{C_F \alpha_S}{\pi} \left(\frac{3}{2}\ln\frac{Q^2}{\mu^2} + \frac{2\pi^2}{3} - 6\right)\right]$$

NLO Real Emission

Next to leading order, real gluon emissions

NLO Real Emission

- Plus distributions come from subtraction procedure of collinear singularities
- When $z \rightarrow 1$, $\log(1 z)$ can be large and potentially spoil perturbation
 - Appear in all orders in a predictable manner

NLO Real Emission ^{*q*} ^{*q*}</sub>

$$\begin{split} C_{qg}^{\text{real}} &= \frac{T_F \alpha_S}{2\pi} \left[\delta(y) \Big[(z^2 + (1-z)^2) \ln \frac{Q^2 (1-z)^2}{\mu^2 z} + 2z(1-z) \Big] \\ &+ \Big[1 + \frac{(1-z)^2}{z} y(1-y) \Big] \Big[(z^2 + (1-z)^2) \Big(\frac{1}{y} \Big)_+ \\ &+ 2z(1-z) + (1-z)^2 y \Big] \Big] \end{split}$$

Real emissions

21

$$\frac{d\sigma}{dxdQ^2dy} \sim f_{p \to \pi^+ n}(y) \times \sum_{q} \int_{x/y}^{1} \frac{d\xi}{\xi} C(\xi) q\left(\frac{x/y}{\xi}, \mu^2\right)$$

LN

- These data provide indirect measure of pion PDFs, since it is virtual
- Need to have as small of |t| as possible
- Assumed dominance of *t*-channel exchange process by quantum numbers
- Introduce some model dependence

Leading Neutron (LN)

$$f_{\pi N}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y[k_\perp^2 + y^2 M^2]}{x_L^2 D_{\pi N}^2} |\mathcal{F}|^2$$

Where
$$y = k^+/p^+ = x/x_{\pi}$$
,
 $g_A = 1.267$, $f_{\pi} = 93$ MeV

$$D_{\pi N} \equiv t - m_{\pi}^2 = -\frac{1}{1 - y} [k_{\perp}^2 + y^2 M^2 + (1 - y)m_{\pi}^2]$$

$$\mathcal{F} = \begin{cases} (i) \exp\left((M^2 - s)/\Lambda^2\right) & s \text{-dep. exponential} \\ (ii) \exp\left(D_{\pi N}/\Lambda^2\right) & t \text{-dep. exponential} \\ (iii) (\Lambda^2 - m_{\pi}^2)/(\Lambda^2 - t) & t \text{-dep. monopole} \\ (iv) \ \bar{x}_L^{-\alpha_{\pi}(t)} \exp\left(D_{\pi N}/\Lambda^2\right) & \text{Regge} \\ (v) \ \left[1 - D_{\pi N}^2/(\Lambda^2 - t)^2\right]^{1/2} & \text{Pauli-Villars} \end{cases}$$

UV regulators used in the literature

2a. DY- q_T Dependent Theory

Leading Order Diagrams

Drell-Yan (DY)

• p_T dependent DY

$$\frac{d\sigma}{dQ^2 dy dq_T^2} = \sum_{ab} \int_{x_{a,\min}}^1 dx_a \frac{x_a x_b}{x_a - 1} f_{a/A}(x_a, \mu^2) f_{b/B}(x_b, \mu^2) \frac{d\hat{\sigma}_{ab}}{dQ^2 d\hat{t}}$$

Here, y is the rapidity, Q^2 is the invariant mass squared of the virtual photon, q_T is the transverse momentum of the virtual photon

q_T -dependent DY definitions

- Effectively a $2 \rightarrow 2$ process, where we have
 - $q\bar{q} \rightarrow \gamma^* g$,
 - $qg \rightarrow \gamma^* q$,
 - and $gq \rightarrow \gamma^* q$

$$p_a = x_a P_A \qquad p_b = x_b P_B$$

$$s = (P_A + P_B)^2 \qquad t = (P_{\gamma^*} - P_A)^2 \qquad u = (P_{\gamma^*} - P_B)^2$$

$$\hat{s} = x_a x_b s \qquad \hat{t} - M^2 = x_a (t - Q^2) \qquad \hat{u} - Q^2 = x_b (u - Q^2)$$

$$\hat{s} + \hat{t} + \hat{u} = Q^2$$

q_T -dependent DY definitions

$$x_{a} = \frac{x_{b}x_{1} - \tau}{x_{b} - x_{2}}$$

$$x_{b} = \frac{x_{a}x_{2} - \tau}{x_{a} - x_{1}}$$

$$x_{b} = \frac{x_{a}x_{2} - \tau}{x_{a} - x_{1}}$$

$$x_{b} = \frac{x_{b}x_{1} - \tau}{x_{a} - x_{1}}$$

$$x_{b} = \frac{x_{b}x_{1} - \tau}{x_{b} - x_{2}}$$

$$x_{b} = \frac{x_{b}x_{2} - \tau}{x_{b} - x_{1}}$$

$$x_T = 2p_T/\sqrt{s}$$

$$\hat{t} = -x_a \hat{s} x_2 + Q^2$$
 $\hat{u} = -x_b \hat{s} x_1 + Q^2$

$$x_a^{\min} = \frac{x_1 - \tau}{1 - x_2}$$

Annihilation Term

$$\frac{d\hat{\sigma}_A}{dQ^2 d\hat{t}}(\hat{s}, \hat{t}) = \frac{8}{27} \frac{\alpha^2 \alpha_S e_q^2}{Q^2 \hat{s}^2} \Big(\frac{2Q^2 \hat{s} + \hat{u}^2 + \hat{t}^2}{\hat{t}\hat{u}}\Big)$$

Compton term

$$\frac{d\hat{\sigma}_C}{dQ^2 d\hat{t}}(\hat{s}, \hat{t}) = -\frac{1}{9} \frac{\alpha^2 \alpha_S e_q^2}{Q^2 \hat{s}^2} \Big(\frac{2Q^2 \hat{u} + \hat{s}^2 + \hat{t}^2}{\hat{s}\hat{t}}\Big)$$

Compton term

Observables

Same E615 $\pi^- W \rightarrow \mu^+ \mu^- X$ experiment as in the q_T -integrated case

$$\frac{d\sigma}{dQdp_T} = 4Qq_T \int_{y_{\min}}^{y_{\max}} dy \sum_{a,b} \int_{x_{a,\min}}^1 dx_a \frac{x_a x_b}{x_a - 1} f_{a/\pi}(x_a,\mu^2) f_{b/W}(x_b,\mu^2) \frac{d\hat{\sigma}_{ab}}{dQ^2 d\hat{t}}$$

$$\frac{d\sigma}{dx_F dp_T} = 4q_T m_T \cosh y \int_{Q_{\min}}^{Q_{\max}} Q dQ \sum_{a,b} \int_{x_{a,\min}}^1 dx_a \frac{x_a x_b}{x_a - 1} f_{a/\pi}(x_a, \mu^2) f_{b/W}(x_b, \mu^2) \frac{d\hat{\sigma}_{ab}}{dQ^2 d\hat{t}}$$
$$m_T = \sqrt{Q^2 + q_T^2}$$

3. Fitting Methodology

Datasets

- We fit the PDFs to the following datasets
- DY:
 - E615 FNAL
 - NA10 CERN
- LN:
 - H1 HERA at DESY
 - ZEUS HERA at DESY
- q_T -dependent DY
 - E615 FNAL (*Q*-dependent and *x_F*-dependent)

Kinematics

36
Kinematic Cuts

• DY

- We first make a cut on $4.16^2 < Q^2 < 8.34^2$ in GeV² to avoid the J/ψ and Υ resonances
- However, we find that the highest Q^2 bin in the E615 dataset is difficult to fit

The theory is undershooting the data in the yellow circle.

At such a high Q^2 and x_F , the data may not be well described by NLO DY theory.

Perhaps threshold resummation is needed

Kinematic Cuts

• DY

- We limit $4.16^2 < Q^2 < 7.68^2$ in GeV²
- To also ensure that factorization theorems are holding, we limit the Feynman x to be $0 < x_F < 0.6$.
 - At such a large x_{π} , we are nearing the threshold of the phase space, and fixed order calculations may be dangerous
- LN
 - We fit data only where $x_L > 0.8$
- q_T -dependent DY
 - Because the falloff of the cross-sections at large Q^2 and large x_F , the integration of the dQ or dx_F observable will not draw much from the high Q^2 or x_F region and we do not make kinematic cuts for those variables.
 - We do limit Q^2 by the resonances, however, as in the inclusive case

q_T cuts for DY

- The fixed-order q_T dependent DY is only applicable at large q_T
- TMD physics comes into play at small- q_T
- We need to determine what is a good cutoff for q_T
- Systematically include more q_T points and determine the goodness of fit by looking at χ^2

PDF Parametrization

• We parametrize the PDF by the following functional form

$$f_i^{\pi}(x_{\pi},\mu^2) = \frac{N_i x_{\pi}^{a_i} (1-x_{\pi})^{b_i}}{\int_0^1 dx_{\pi} x_{\pi}^{a_i+1} (1-x_{\pi})^{b_i}}$$

• We've tried Two shapes for more flexibility:

$$f_i^{\pi}(x_{\pi},\mu^2) = \frac{N_{1,i}x_{\pi}^{a_{1,i}}(1-x_{\pi})^{b_{1,i}}}{\int_0^1 dx_{\pi}x_{\pi}^{a_{1,i}+1}(1-x_{\pi})^{b_{1,i}}} + \frac{N_{2,i}x_{\pi}^{a_{2,i}}(1-x_{\pi})^{b_{2,i}}}{\int_0^1 dx_{\pi}x_{\pi}^{a_{2,i}+1}(1-x_{\pi})^{b_{2,i}}}$$

• But one shape always seems to have just as good of χ^2 , and it does the job

PDF Parametrization

- We parametrize in the same way the
 - valence quark distribution, $v^{\pi} \equiv \bar{u}_{v}^{\pi^{-}} = \bar{u}^{\pi^{-}} u^{\pi^{-}} = d_{v}^{\pi^{-}} = u_{v}^{\pi^{+}} = \bar{d}_{v}^{\pi^{+}}$,
 - the sea quark distribution, $s^{\pi} \equiv u^{\pi^-} = \bar{u}_s^{\pi^-} = d_s^{\pi^-} = \bar{d}^{\pi^-} = s^{\pi} = \bar{s}^{\pi}$,
 - and the gluon distribution, g
- Two sum rules exist to constrain normalizations:
 - The quark number rule:

$$dx_{\pi}v^{\pi}(x_{\pi},\mu^2) = 1$$
 Constrains normalization of the valence PDF

• And the momentum sum rule:

$$\int_0^1 dx_\pi x_\pi (2v^\pi(x_\pi,\mu^2) + 6s^\pi(x_\pi,\mu^2) + g(x_\pi,\mu^2)) = 1$$

Constrains the normalization of the *sea*

Why Fix Normalization of the Sea?

- Previously, we fit the normalization of the gluon by the momentum sum rule
- We tend to see negative gluon distributions if

$$N_g = 1 - \int_0^1 dx_\pi x_\pi (2v^\pi(x_\pi, \mu^2) + 6s^\pi(x_\pi, \mu^2))$$

- We previously had this problem too! But we included a large penalty on the χ^2 when the gluon's normalization was negative
 - The penalty is not ideal when fitting with steepest gradient descent!

Fixing Normalization of the Sea

- We can more easily fix the normalization of the sea and hard-code the normalization of the gluon to be a free parameter, but strictly positive
- The sea never really becomes negative even though it is allowed to

Additional parameter constraints

- We also constrained the *b* parameter of the sea and gluon to be greater than 5
- Tried first a minimum of 0.5:
- In the probabilistic interpretation of PDFs: doesn't make sense to have such large sea and gluon distributions at x_{π} near 1

Bayesian Statistics

• The probability of the parameter set \vec{a} given the data is

$$\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z}\mathcal{L}(\text{data}|\vec{a})\pi(\vec{a})$$

• Where Z is the Bayesian evidence, π is the Bayesian priors, and the likelihood function is

$$\mathcal{L}(ext{data}|ec{a}) = \exp\left(-rac{1}{2}\chi^2(ec{a})
ight)$$

Bayesian Statistics

• The χ^2 function is

$$\chi_{\text{expt}}^{2}(\vec{a}) = \sum_{i} \frac{(D_{i} + S_{i} - T_{i}(\vec{a})/N)^{2}}{\sum_{j} (\alpha_{i,j})^{2}}$$

• *D* is each data point, *S* is the systematic shift associated with correlated uncertainties, $T(\vec{a})$ is the theory calculation, based on the parameter set, *N* is the overall normalization for the experiment, and α are the uncorrelated statistical uncertainties

The strategy

- We start with a flat Bayesian prior, π , where the parameter set is randomly chosen
- We bootstrap the data, meaning the central values of the data are allowed to fluctuate randomly within the uncertainties
 - This ensures that we fit a slightly different dataset each time, reflecting the statistical uncertainties in the data into the fit
- We fit first only the q_T -integrated DY data
- Next, the priors are the \vec{a} that we found from the DY only fit. We add the LN data to the DY data and fit.
- Using the priors from DY+LN, we fit the full datasets, DY+LN+ q_T -dependent DY

4. Results

DY & LN study

Including q_T -data

Process	Experiment	# of points	χ^2	χ^2 /npts	norm
DY	E615	42	37.03	0.88	1.05
	$NA10_{194}$	34	18.53	0.54	0.86
	NA10 ₂₈₆	20	14.11	0.71	0.80
\mathbf{LN}	H1	58	22.52	0.39	1.26
	ZEUS	50	73.22	1.46	0.95
\mathbf{DY} - q_T	E615 x_F -integrated	34	37.86	1.11	1.11
	E615 Q -integrated	49	40.49	0.83	0.51
	Total	287	243.74	0.85	

Parameters

• Shrank the range of certain parameters (*b* parameters for the sea and gluon)

$$f_i^{\pi}(x_{\pi},\mu^2) = \frac{N_i x_{\pi}^{a_i} (1-x_{\pi})^{b_i}}{\int_0^1 dx_{\pi} x_{\pi}^{a_i+1} (1-x_{\pi})^{b_i}}$$

PDFs

• Shown are the PDFs fit to all the datasets, and the scale is $\mu = q_T/2$ for the q_T -dependent DY data

PDFs

• Central Values

• Central Values relative to the full fit

DY data divided by theory

DY data divided by theory

• NA10

LN data divided by theory

• H1

LN data divided by theory

DY q_T -dependent data divided by theory

DY q_T -dependent data divided by theory

• E615 $\frac{d\sigma}{dx_F dqT}$

• Scale is
$$\mu = \frac{q_T}{2}$$

Momentum Fractions

$$\langle x_{\pi} \rangle_i = \int_0^1 dx_{\pi} x_{\pi} f_i^{\pi}(x_{\pi})$$

moments from resultsFinal/step13b							
g = sea =	2.99e-01 +/- 1.65e-01 +/-	7.12e-02 4.29e-02					
valence =	5.28e-01 +/-	1.61e-02					

Momentum Fractions

New: DY+LN+ q_T -dependent DY

Zeus data has huge effect

- When using only the H1 data to fit for the LN observables, the momentum fractions are different than using H1 and ZEUS
- Recall, in
 - H1: 7 < Q^2 < 82 GeV²
 - ZEUS: 7 < Q^2 < 1000 GeV²

5. Impact of q_T -dependent DY

Reducing PDF uncertainties

- Adding more and more datasets reduces the uncertainties on the PDFs
- Shown is the uncertainties relative to each fit's central values
- Blue is DY only fit, orange is DY+LN fit, Green is DY+LN+ q_T fit

Channel-by-channel contribution

- We can see the observables of each experiment in terms of the degrees of freedom that we fit, *i.e.* valence, sea, and gluon PDFs
- The larger the contribution to the overall cross-section means the more constraints come from that observable

DY Channel-by-channel

- The valence dominates the DY cross section, especially as x_F grows
- The gluon contribution is negligible!
 - DY can't tell us much of anything about gluons at these kinematics!

LN channel-by-channel

- For the LN observables, we see the sea and gluon contribute *much* more!
- Better constraints on sea and gluon
 - Especially at low- x_{π}
- Valence becomes more important at high-x_π region, where DY already lives

q_T -dependent DY Channel-by-Channel

- The gluon is NOT well constrained by the q_T-dependent DY as hypothesized!
- The gluon PDF is so tiny at these kinematics, it is hard to have much of any contribution!

6. Scale Dependence

Ambiguity of Scale

- In Collinear Factorization, one needs a hard scale that is $\mu \gg \Lambda$, where μ is a hard, partonic scale, and Λ is a scale associated with soft, non-perturbative physics
- In DIS, for instance, one hard scale exists, Q^2 , which is the invariant mass of the virtual photon
- In DY, again, only one hard scale exists, Q^2
- However, in the q_T -dependent DY, two scales exist
 - The invariant mass of the dilepton pair, Q^2 is measured, but also the transverse momentum of the dilepton pair, p_T
 - Which scale is appropriate?

Exploration of Scale

• We performed fits with $\mu = Q$, and had trouble fitting the q_T dependent data

[I 17:13:20	0.516 Notebo	okApp] Ker							
summary of	resultsFin	al/step13a							
prediction	reaction	okApp] idx			col	0npts0b	6-41fchi2a	<pre>lchi2/npts 6</pre>	72 n
False	L.294 Not ln o	1000			tter H1	ynb58	24.43	0.42	1
False	L.434 Not li o	2000			ZEUS	oynb 50	78.91	1.58	0
False	// dy-pion	10001			E615	ovnb42	37.21	0.89	1
False	dy-pion	10002			NA10	3688 34 3-	d0b620.57	b5a1-d 0.61 e5	86672 0
False	dy-pion	10003			NA10	c8h2005	3-d014.13	b-b5a1 0.71 40	-58660
False	pion_qT	1001			E615	2h2343	51.91	h5a1-d1.53a5	866720
False	pion_qT	1002			E615	c8b 49 05	172.45	b-b5a13d5240	e5866 9
[1 00:30:54	1.745 Notebo	okApp] Sta	rting	buffering	for ca	287	399.61	b5a1-dc440e5	36672:

Exploration of Scale

• We performed fits with $\mu = q_T/2$, and had much better success

number of	replicas = 999							
summary of	2resultsFinal/	step13b						
prediction	23reaction7091	0: Iidxr		compiler/col/	snptsc	e/serv chi2 c	chi2/npts	servicnorm7
e tha Ealse	will be ln ed).	De1000s		H1	58	22.52	0.39	1.26
2020- False	23:52:00 ln 7093	2000		compilerZEUS/	/ser 50 c	e/ser73.22c	c:17671.46	reamEx0.95o
False	dy-pion	10001		at /FittE615	vnb42	37.03	0.88	1.05
False	dy-pion	10002		at /Fit+NA10	wnb34	18.53	0.54	0.86
False	dy-pion	10003		at /Fit+NA10	wnh20	14.11	0.71	0.80
False	pion_qT	1001		E615	34 North	37.86	1.11	1.11
False	pion_qT	1002		at /FittE615	ynb ⁴⁹	40.49	0.83	0.51
[I 00:05:13 FI 00:05:56	3.097 NotebookA 5.556 ANotebookA	op] Kerr op] Savi	el inter ng file	nupted:0a5040 at /Fitter.ip	287	243.74	0.85	15397-00-step 13

χ^2 for Scale Variation

number of	replicas = 250							72
summary of	resultsFinal/s	tep13a						
prediction	8 Sreaction OkA	idxne]		col	onpts	b6-41fchi2a1chi2	2/npts66	72 norm
False	1.294 Not lh ookAp	1000in		ter H1 p	ynb58	24.43	0.42	1.27
False	1.434 Not ln ookAr	2000 ind		ZEUS	oynb50	78.91	1.58	0.94
False	1.27 dy-pion ookA	10001		E615	vnb42	37.21	0.89	1.11
False	2.00 dy-pion ockAr	10002		NA10	3688 34 3	-d0b620157-b5a1	-0.61e5	86672 0.91 d
False	dy-pion	10003		NA10	c8b20p	53-d0 14.13 fb-b5	10.7140	-5866 0.85
False	pion_qT	1001		E615	2h2234	-d0 + 51.91 + 5.1	1.53	66770.50
False	pion_qT	1002		E615	c8b 49 (53-d172.45fb-b5	3.5240	-5860 .5 0
[1 00:30:5 [1 00:30:5	4.745 NotebookAr 6.479 NotebookAr	p] Start p] Restor	ing buffering ring connectio	for ca on for	287	399.61	1.39	86672 : 2b3d9 e586672 : 2b3

colpynpts

r**H1**8

ZEUS

E615

NA10

NA10

E615

E615

58

50

42

34

20

34

49

287

chi2 chi2/npts

0.41

1.52

0.89

0.60

0.67

1.08

2.52

1.15

23.53

76.08

37.48

20.33

13.44

36.89

123.45

331.19

norm

21.26

0.94

1.09

0.89

0.83

0.58

0.50

number of	replicas = 999	lin mome hh l^oker r	nt space,	-ed· a5	04eh39.	-d61d-4	h3d_9443_9f	b3af094539	allery	
summary of	/resultsFinal	step13b								
prediction	23reaction7091	0: Iidxr			er/col/	/snptsc	e/serv chi2 c	chi2/npts	servicnoi	dm7fo
e tha Ealse	will be ln ed).	De1000s			H1	58	22.52	0.39	1.2	26
2020-False	23:52:00 ln 7093	2 2000			erZEUS/	/ser 50 c	e/ser 73.22 0	c:17671.46	reamEx 0	95or
False	dy-pion	10001			E615	ovnb42	37.03	0.88	1.0	05
False	dy-pion	10002			NA10	hvnh34	18.53	0.54	0.8	86
False	dy-pion	10003			NA10	wnh20	14.11	0.71	0.8	80
False	pion_qT	1001			E615	34	37.86	1.11	1.1	11
False	pion_qT	1002			E615	bynb ⁴⁹	40.49	0.83	0.5	51
[1 00:05:1: [1 00:05:50	3.097 NotebookA 5.556 ANotebookA	pp] Kern pp] Savi	nel inter Ing file	rupted at ∕Fi	: a504e tter.ip	287	243.74	0.85	1539 olor-in0-ste	p 13.p

$$\mu = q_T/2$$

number of	replicas =	247				INSTANT GAMES	MORE
summary of	resultsFin	al/step13d					
prediction	reaction	idx	col	npts	chi2	chi2/npts	norm
-41fbFalse	-dc440e58 En 7	2:2b3d1000	59bc4ba69d05b4f607c H1 ₄	-c7 58	24.56	0.42	1.27
b6-41False	a1-dc440e 50 6	672:2b20003	869bc4ba69d05b4f ZEUS	064c 50	78.50	1.57	0.94
False	dy-pion	10001	E615	42	37.13	0.88	1.12
False	dy-pion	10002	NA10	34	21.08	0.62	0.92
False	dy-pion	10003	NA10	20	14.49	0.72	0.85
False	pion_qT	1001	E615	34	67.19	1.98	0.50
False	pion_qT	1002	E615	49	188.10	3.84	0.50
fb-b5a1-dc4	140e586672			287	431.05	1.50	

$$\mu = 2q_T$$

$\mu =$	q_T
---------	-------

 $\mu = Q$

number of replicas = 243

prediction

False

False

False

False

False

False

False

summary of resultsFinal/step13c

reaction

dy-pion

dy-pion

dy-pion

pion_qT

pion_qT

ln

ln

idx

1000

2000

10001

10002

10003

1001

1002

PDFs at different scales

- The good news is that the PDFs change
- However, since we can better describe the data with the $\mu = q_T/2$ scale, that is the preferred choice

7. Future Work

This Analysis

- •Put PDFs on LHAPDF for community use
- •Compare the proton vs pion
- •Make projections for EIC kinematics

Projections for EIC Kinematics

- We can use the EIC kinematics to predict the $F_2^{LN(3)}$ for tagged DIS experiments as "pseudodata"
- Construct number of events from $F_2^{LN(3)}$ and calculate a statistical uncertainty
- At small t and large x_L in LN, we can get the one pion exchange and get new LN data

Threshold Resummation

Indicates a need for resummation since the terms contribute a lot at high x_π

Pion TMDs

Toy example: how we expect the W+FO-ASY to work

