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1. pr-dependent DY review
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3. Pion vs Proton Structure

4. TMDs




pr-dependent DY




Leading Order Diagrams




Drell-Yan (DY)

* pr dependent DY

do ap

Lallp
dQ2dyqu Z/a;amn _1fa/A(‘CECL7/"L )fb/B( b Iu’ )dQ2di_‘

Here, y is the rapidity, Q¢ is the invariant mass squared of
the virtual photon, gy is the transverse momentum of the
virtual photon




Ambiguity of Scale

o In Collinear Factorization, one needs a hard scale that is u > A, where u is a hard,
partonic scale, and A is a scale associated with soft, non-perturbative physics

o In DIS, for instance, one hard scale exists, Q%, which is the invariant mass of the
virtual photon

o In DY, again, only one hard scale exists, Q2

o However, in the qr-dependent DY, two scales exist

o The invariant mass of the dilepton pair, Q% is measured, but also the transverse momentum
of the dilepton pair, pr

o Which scale is appropriate?
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o We performed fits with

() € [5.0,5.4]
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rr € [0.2,0.3
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b
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Why q7/27

(e}

We see that the y? for the gy-dependent DY datasets are considerably lower for the choice u = q;/2 than u = Q

(e}

Recall that data is underpredicted by over a factor of 2 when u = Q

(e}

Such a large normalization correction is unsettling and could point to the need for higher order terms

do
dQdqr

(e}

However, when u = gqr/2, the normalization for the data is within the reported normalization uncertainty

do -
(deqT still has norm=0.51)




o Recall Dave Soper’s lectures

o The full A does not depend on
U

o In a perturbative analysis, one
wants to suppress higher
order corrections to get closer
to the full A

o A choice of u = Q here
eliminates the logs, but other
constant terms may still be
present

o Perhaps in our case, there
exist higher order terms with

logs of u?/q7

The choice of scale

e Our example: ete~ — v* — hadrons

ot = 48;‘2 (Z ei) 1+ A

Ap) =

AU |11 4092 4+ 1.9167 log (42/Q)] (asw))z

s s

+ [~12.805 + 7.8179 log (1 /Q?) + 3.674 log” (11*/Q?)]

y (as(u))g




s g a safe scale?

: , A?
o Ascale should be related to some hard scale in the measurements in order to suppress 0(@) terms and make

factorization

o Following renormalization group equations, as in ag, one should keep Lorentz invariance as much as possible

o Examples of Lorentz invariants are 4-momenta squared, or dot products of 4-momenta (like Q% or Mandelstam s,
t,and u)

o However, qr is dependent on reference frame!
o |If change from the hadron-hadron COM, transverse momentum takes on a different meaning

o Looking at the photon rest frame, there is no transverse momentum!

o |n the hadron-hadron COM frame, however, g% is an invariant quantity




Kinematics of g%

o We can describe all of momentum squared and dot products of the 4 particle momenta that are involved

Pa = TaPa = (xa—8,5¢,xa_8> Pq Py* = Pug
2 2
>
S = S
= xp P Z(ZE—,O ,—33—)
Pb vI'B b 5 1 b 5 !
P~y* = Pup = (EaﬁTapL) Dg Py

E = \/Q2+p%+pL




Kinematics of g

o We can describe all of momentum squared and dot products of the 4 particle momenta that are involved

2F
Tp=—F7= =T+ X3 Py* = Pug
Vs Pq
vy — 20T >
VS
2
xL—xF:%:ml—xZ Y
S
1= —(u— Q% /s = = (a2 + 47)Y/2e¥ Pq Dg




Kinematics of g

o We can describe all of momentum squared and dot products of the 4 particle momenta that are involved

Pg = Pa + Db — Duj Pq Pre = Pur
= ((xq + xb)g — B, —pr, (T, — xb)g — L) "
:\/75(;5@+xb—xg,—fT,xa—xb—xL) Y
_ g(xa_i_xb—xl—xz,—fT,xa_xb_xl + x3) Dg Py




Invariant momenta and dot products

pgng:pgzo Pq'pqzxaxb§
S
Pup = Q> Pq " Pup = Tal2g ) Py = Dug
S i >




Invariant g%

S

Py Pup = Z(xE>33Ta$L) (xq +Tp — 1 — T2, —T, Ty — Tp — T1 + T2)

S

2 2 2
= Z(xam + TpT1 — ] — T1X2 + TyTo + TpXo — T1X2 — T + Tp

2 2
— TqT1 T TpT1 +X] — T1T2 + TyTo2 — TpX2 — T1T2 + :1:2)

s 22
:5(331(33()—332)-1-332(:6&—561)4-—2 ) .
D, Py* = Pun

A clue at g%




Invariant g4

e
Pa + 1) = 8= (Dup +py)° a2
( ) (Pup + o) @@ @y @on @i @y
2 s (Q2—u_ s )+ s (Qz—t_ s )+2}
2 _ 278
Pr == Assumed here are:
_§—Q2_§[Q2—f&_(Qz—u)(QQ—t) Q> -t (Q*—-1t)(Q*—u) S$+t+10=0Q*2
2 2 s 52 * s 52 ] s+t+u=Q*+p;
1 .
= [GHita-0) 207+ 2@ - uQ? ~ 1Q* + u)]
1
:g(—Q2(s+u—|—t)+Q4-l-ut)
1

= —(~QX(Q* +PX) + Q' +ut)

ut — Q*p%
S




Form of p%

o The result

ut — Q*p%

pF =

S

can be connected with prompt photon and the exclusive process

o In prompt photon, the emitted photon in hadron-hadron collisions is real and measured, and thus Q% = 0

o In the exclusive process, no other hadrons are emitted, meaning pz = 0




do

do

A note on the xp cut

o We choose the maximum xz = 0.6 so that we don't run into a region where the O(as) terms are a major
contributor of the cross-section

z |(9((\'5_)/

/
/
/
(1B EE R R L LT LT T PP PP PP PRI [ EER R R E R T LT PP PP PPPPPPPPP 7/ ......
/
/
; /
0.9 - [ 0.9
= =
S It / g p
Qj 0.8 - = 08
~
—— NLO component )
0.7 A < 0.7
~—— NLO plus component —_
)
~ 0.6+ S 0.6 -
S b o= b
1 ~c ™1
< <
~ 0.5 1 ~ 0.5 1
0.4 0.4 1 —— NLO component
—_— ~——— NLO plus component
(13 T T T T T “3 T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8




Stability of the PDFs




Stability with respect to scale

o We find that regardless of the scale dependence you use to fit the g;-dependent DY data, the PDFs remain the
same

0.5
0.4 Q valence
/-; qT/'Z
5 03 T gr
L'E 0.2 2qr
&
0.1
0.0

0.01 0.1 0.4 06 0.8 0.01 0.1 0.4 06 0.8 0.01 0.1 0.4 06 0.8 Tr




Stability with respect to cuts on xp

o Even though we want to avoid problematic regions in xz, we can explore the stability of the PDFs

0.5
~ O.T
=
ig/ 0.3 0.8
L'?: 0.2 0.9 /
0.1
0.0 e - - )
0.01 0.1 0.4 06 0.8 0.01 0.1 0.4 06 0.8 0.01 0.1 0.4 06 0.8 T
T

o That the PDFs don't change as a function of the cut on xr is reassuring and we keep xg gy = 0.6




Does the gr-dependent data affect the
PDFs?

o We would like to see the impact of the qr-data on the PDFs

o We see the central values change considerably with the inclusion of LN data, but when we add the g;-data,
barely anything changes

0.5 N N

04l |glue/10 dy sea dy
- . In In
ig/ 0.3 — qT — qT
“E 0.2
S

0.1

0.0 - - '

0.01 0.1 04 0.6 0.8 0.01 0.1 04 0.6 0.8 0.01 0.1 04 0.6 0.8 T

o 12 In
ég/ Lok T B — qT
\ . T —— d - d T
> — dy — dy A\
8 0.8 In In \ [
0.6 aT ar ANV
L

0.01 0.1 04 06 038 0.01 0.1 04 06 038 0.01 0.1 04 06 038 T




How about the uncertainties?

o Looking at the uncertainties of the PDFs, we can see how much of an effect the qy-dependent DY has

2.0

1.8

1.6

1.4

xﬂ‘f(ajﬂ')

1.0

glue valence dy sea
In
qT
0.01 0.1 04 06 0.8 0.01 0.1 04 06 0.8 0.01 0.1 0.4 06 0.8 T
|

o Uncertainties don't change much either




If not much changes, how about making
predictions?

prediction (no fit) Jenoms 2 } Fit— Jeioi

o We can use the PDFs extracted I i " | 1 t
from DY+LN data only to ol . — 9 .
attempt to describe the gy- K | * “I 'LJ"Jﬂl K + | ~ ¢ '1""'3'“[
dependent DY data S } | ] i ! |

§ 2 I I ' (Te 5.0,5.4] g 2 I ' (‘{.e 5.0,5.4]
| = : < 1y }

o The same cannot be said for = | | oL | } |
the xp-dependent data as the 8 - } Qep4.58 8 B Qe[54,58
normalization for the fit is 0.51 o 1 } o 1 }

= b , = v |

o However, if we use 0.51 for the £ “ | Qe[58.68 £ ‘ I l Qe 5868
normalization for the 1t * | | i 1t + } }
prediction, we end up with a Py — . ] Py - l i I
good description (y? = 0.91 vs chi2=1.18 ~ SO & o l o
x? = 0.83 for full fit) Norm=|1 .0 + | E615 I\(l;cr::i=11..1111 E615

2.5 3.0 3.5 PO 25 3.0 3.5 PL.0




Plon vs Proton

Structure




Consider the momentum fraction

o How are the partons in the hadrons distributed?

proton (x) vs pion (x;) at Q%2 =m?

3 pglu
100 - 3 psea
—1 pval
80 - 1 mglu
'L 1 msea
Flavor Pion (x;)favor Proton (x)gavor 60 - mval
valence 0.528 £ 0.0161 0.481 + 0.0026 . V\J‘
20 - }
sea 0.165 4+ 0.0429 0.147 £+ 0.0038 N A4 ' | - L |
0.0 0.1 0.2 0.3 0.4 0.5 0.6

gluon 0.299 £0.0712 0.372 £ 0.0032

(x), (Xn)

0.7




Gluon distributions

Gluon distribution comparison

1073

10°

» This question was asked at my prelim!

< (x)/(fP(x))

14

12

10 -

0.8 -

0.6 4

Gluon distribution ratio to proton

k=m

1073

1072 107!

10°




High x-region doesn’t agree

o The slope of the gluon is rather consistent whether it's pion or proton
o The DGLAP equations of evolution is the same - why the generation of gluons in likely similar

o However, the large momentum fraction range isn't good agreement




F, Structure Functions

o Specifically in the ZEUS paper, we
can see some attempts to equate
FP with FF

o Here, the GRV pion PDFs are used

to construct F}

o This is problematic, because GRV
only parameterizes the PDF using
high-x,; data (DY and prompt photon)

o FEP is scaled by 0.361

e ZEUS 95-97

.......... F; scaled

— F3GRV




The ZEUS method - normalization

o If we multiply the Ef (generated by JAM19 PDFs) by 0.6, we get the following plot
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The ZEUS method - normalization

o If we multiply the Ef (generated by JAM19 PDFs) by 0.6, we get the following plot Terrible

/ agreement!
120

06 115
05 1 110
04 1 oy 105
03 L 10
| W N
095~//I,,,f-~*“"”—ﬁ-_ﬁ
021
0.90
011
: 0.85 1
0.0 1 : »
: : : : 0.80 : :
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The Nikolaev, Speth, and Zoller (NSZ)
method

o A parameterization of the proton’s structure function in relation to the pion’s structure function as
p 2y _2pm (E 2)
F2 (x) Q ) 3 FZ 3 X, Q

o Used a color-dipole BFKL-Regge expansion

120
0.7 -
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0.6 - 2( )
110 -
2 P2
0.5 A fF5(£x
3" 2 (3 ) 105 -
BN
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o~ “\~ 100
. 03 ~
' W 0.95 -
0.2 -
0.90 1
0.1 -
0.85
\
001 | l ' ; 0.80 ' '
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Normalized NSZ
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Channel-by-channel




Channel-by-channel contributions - DY

o | show the contributions to the observable in
terms of the degrees of freedom of the fit, i.e.
the valence quark, sea quark, and gluon
distributions

o Gluon is negligible

do
dQ*dY

do
dQ*dY

Ny

1.0

(.8 1

0.6 1

0.4 1

0.0 4---

— k=val

— k=sea

—— k=glu

e — .

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Irr




Channel-by-channel contribution - LN

1.0 1

o Sea quark and gluon distributions are
much larger

0.8 -

7, -
'JLLC:‘ 0.6 1
\
A
— 0.4
"
.
—

LL 0.2 -

U.U L L L L I I

10-2 10-1




do
dgrdQ

I;/

do
dgrdQ

Channel-by-channel contribution DY-q7

o The hypothesis was that by including the qr-dependent DY data, we constrain better the gluon in the large-x;

region

lu desesetesssstssattstststatasasttttttststasatastststasasasaststasasasEaTa TN S sSEa s et tasannnn
(.8 1
— A OF
wd Q=425
— k=val
—— k=sea
— k=glu
0.4 H
0.2
R B e
T T
2.8 3.0 3.2 3.4 3.6 3.8 1.0 1.2

do
dgrdQ

l.'/

do
dgrdQ

1.0

0.8 1

Wl 0=06.30
— k=val
—— k=sea
— k=glu

0.4 1

0.2

0.0 q---

2.8 3.0 3.2 3.4 3.6 3.8 1.0 1.2

D0 e AR -
0.8 1
@ (o d
o= Q = 7.°
=| & 061 7.20
= — k=val
T~ —— k=sea
-~
> — k=glu
o= 044
3|5
=
0.2
0.0 7=
2.8 3.0 3.2 3.4 3.6 3.8 1.0 1.2




I,
b=
T =

=

=
~—
=~

Ly,
b=
=| &

=

=

Channel-by-channel contribution DY-q7

o The hypothesis was that by including the qr-dependent DY data, we constrain better the gluon in the large-x;

region
lU Iy
0.8 A
=
rr = 0.05
0.6 1 F
— k=val
—— k=sea
— k=glu
0.4 1 &
0.2
S
IR RS oo e e o ———— L B
T T
2.8 3.0 3.2 3.4 3.6 3.8 1.0 1.2

1.0
0.8 A
_LL
8 4
s|= rrp = 0.15
<[ & 06 F 1
= — k=val
T~ —— k=sea
<
S — k=glu
S ’,.S 0.4
| =
=
=
0.2
e e
2.8 3.0 3.2 34 3.6 3.8 1.0 4.2

do
dgrdx

l.'/

do
dgrdxp
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2.8 30 3.2 3.4 36 3.8 1.0 12
qr




If we had pW data in the same way as TW

o Can use kinematics and tungsten PDF to determine predictions for channel-by channel in the Proton

1.0 1 1.0 4 L0 reeeeerere ettt ettt aas
0.8 1 0.8 0.8
D . -
Z . [} = s — =4
0.6 =~ 061 = E 0.6 4 Irp = 0.05
LN = — k=val
.;<\ ,¢<\ —— k=sea
Py i L — k=glu
0.4 O olE 04 £
Z =%
3 <
) 0.2
0.2 1 0.2
0.0 -
0.0 1 0.0 e
T T T T T — T T
0.0 0.2 0.4 0.6 0.8 10-2 10-! 2.8 3.0 3.2 3.4 3.6 3.8 1.0 1.2




s low-xf suitable to constrain T gluon?

Recall xz = 24/tsinhY, where Y is
the rapidity.

1.0 4

s
1

If xp > 0,thenY — 0.

do
dgrdrp

We already know that the cross s .

o e —— k=sea

section levels off nearY = 0, so very s — kgl
o \,: 0.4 4

small xg will not change the
constraints!

0.2 4

0.0 4

'l. v v """l, v v L ] L L LA AL |
10-3 10-2 10-1 10°




Are there any kinematic regions?

1_“ L ................................................... .: .........................
o We want to be able to constrain /
the gluon well at any kinematics, L 087 :
but is this possible? 5
3 :
o We make a theoretical triply T o6 =270
i i i S : — k=val
differential plot as a function of ~ e =0.05 — k:‘s’;
Q? at the lowest g that we feel 5 — k=glu
comfortable in the FO regime o|S 047
o Vertical dotted lines are &
experimental bookends 0.2 5
> Need to go to very low Q2 to get
10% contribution of the cross 0.0 : :
section from the gluon 0 20 10 60 80 100
2
o Hopeless to constrain the gluon @

with gr-dependent DY




Still Hope for the proton!

O Looking at the l.l] E I syttt l»“ L
contribution for the
proton’s gluon at 7 08 -
large x, we have = = —
ge X, = S .. zp=0.05 8% .. wp=10.05
hope by examining ~|s — kvl S — kval
— —_— —~— —_—
the qr-dependent <« | N e
DY data E% 047 slE 04
0.2 1 0.2 1
_
l)l)- ----------------------------------------------------------------------------------------------- []A[]_ ...............................................................................................
'Z.'\ §'U ;2 3.Il i‘() S‘N l'U l."Z 2”\ ilU ‘i‘.?. i‘l ;'(J il\ l,'U l,".?
qr qr
Proton




There is still merit to studying pion-

induced gr-dependent

DY data




TMD Factorization

Much of the following has been taken from Aybat, Rogers, Phys. Rev. D83 :114042, (2011).




Field’'s book

o Field's book has some primordial motion inside the incoming hadrons to describe the low-q; data

o The incoming partons here have some initial transverse momentum

: : : 1 k2
o Primordial terms were usually shown as some Gaussian, such as f(k2) = 7 €Xp (— #)
q




Asymptotic term

o As first shown in Collins, Soper, Sterman, Nuclear Phys. B250 (1985) 199-224, there was a term, Y, different from
the purely TMD W

do 4772(12{ 2 013
~ (27) fdzbe'oT *w(b; Q,xa. Xp) The W term
2 2 2
dQ*dydQr 9Q°s describes low-q;
| physics;
+Y(Qr; Q’xmxa)}- Associated with
TMDs

o Y is the fixed order term minus the asymptotic term.Y = FO — AY
o Atvery low qr, the fixed order and asymptotic terms should cancel, leaving only the TMD physics

o At very high g, the TMD terms and asymptotic terms should cancel, leaving only the fixed-order physics




Asymptotic Term Form

o This is what the asymptotic term looks like

dé, d
(QT Qawaaxb Z/ gg / €b a 'LL))N
Ta ST JTp N 1
X Rgb faya(€as 1) fo,B(Ebs 10)

/-

Hard physics that
follows the limit of
the fixed order as

qr — 0




Asymptotic Term

262 2 3
() _ p) _
Ryg = Ry) = 5452601 = 22)3(1 = )llog (57) = 5]
1—|—z§ 1—|—z§
01— za) [T ], +00 - =) 711, ]




Asymptotic - plus term

o Have to treat the 1 2 1 2
dzp -1+ 2 x dzp -1+ 2 x
plus term correctly / b [ b]+fa(:ca)fb(—b) = / b [ b]+fa(xa)fb(—b)
with the lower zy 2b 1 — 2 Zb o 2 1—2 2
bound # 0 _/xb dzp 1+Z2] fu(x )f(SUb)
0 Zh l—Zb +JaTa b Zb
1 2 1 2 Zp
dzy 1+ 2z Tp / 1+ z; fo(32)
a\La — ) — d a\La ( P — )
[ 2R e 2 = [ fo(en) (P2 = )
oo dzy 1+ zg Ty, /mb dzp -1+ zg Th
[ 2 EER] fen) = [T R e D




Asymptotic - plus term

[ B fean = [ dzbl g (25 o)

b 1 — 2

_/Oxb de[1+Zb]fa($a)fb( )

Zbl

sE
~—

1
[ B fean = [ an i e (M

Tp 2
— fa(@a) fo(xp) /O dzy 1 J_r Z

/; dszzb fale )(f"(ﬁ_i)

1— Zb

F Fal@a) folas) [%xb@ T 2p) + 2log(1 — )]
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order curves match exactly & | ¢
S x
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TMD factorization setup

o We can look to SIDIS (Semi-Inclusive Deep Inelastic Scattering) as a natural language for TMD physics

WH =3 " [Hp(Q; 1)*|* x
f

/ d’kir d°kor Fyp(z, ks 15 () Dy (2, 2kor; p; (p) X

x 6@ (ki + qr — kor)

o Here, H; are the hard parts, and the integration is for the soft parts over the external ky
° Ff/p, is the TMDPDF of the proton
° Dp/s is the TMDFF for detected hadrons

o Note the two scales u-for renormalization group equations, and ¢ - for solving CSS equations (for rapidity
evolution)




A Brief Word on Divergences

(e}

Wilson lines are buried in the definition of the TMDs

(e}

TMD correlation functions contain light-cone divergences when Wilson lines point in exactly light-like directions

W (o0, z;n) = Pexp [—z’go/ ds n - Aj(z + sn)t®
0

(e}

Can point the n vector off the light cone a little bit to avoid divergence

na = (1, —e_2yA,Ot) ng = (—623’”3, 1,0).

(e}

They tilted Wilson line directions are space-like: n? < 0




TMDs in b-space

o While the interpretation of TMDs are in momentum-space (intrinsic transverse momentum of partons), the TMD
evolution equations and factorization are more appropriate in by-space

o br isthe Fourier conjugate of kp
WH =

Z M5 (Q; ) / d’kir d°kord® (k17 + qr — kar)

X Fgp(z, kar; 5 CF) Dhy g (2, 2kar; p5Cp)
DT _igy.
=@t [ e

><Ff/p(ac,bT;,u;CF)Dh/f(Z,bT;,U;CD)- 9)

o Will be working with F and D in b space




—volution

o We see the evolution with respect to the “rapidity” scale ¢

81In F(z, br; u, (r)

~

= K(br;
O vin (br; p)
o Calculable in perturbation theory
~ o Cr .
K (pobr) = S [10g(4203) ~10g(4) + 2]
as(1)Cr pbr | 2
= — 1 e
L Llog (5 )]

. . . b ~
o Reason in the 2nd form is that it's common to choose scale u = b—o suchthat K =0

T




SmaH'bT

o At small by (large kg), one can write the TMD PDF in terms of collinear PDFs
o A convolution of the PDF and a perturbatively calculable coefficient function

o This expansion is known as (operator product expansion) OPE
Ff/P(ﬂU br;p,(r) =
-3 [ 1503, 0 301
+ O((Aqcpbr)?).
o When by gets large (br = Agep), expansion breaks down

o Would need to incorporate intrinsic k; behavior in the hadron non-perturbatively

o Large br-dependence cannot be calculated by pQCD, but the scale dependence can be handled




b.

Recall, however, that the W term is a Fourier transform, and one must integrate all by

(e}

(e}

To combat it, a prescription is adopted,

br

b, (br) = .
T \/1 + b IIldX

(e}

Where b, replaces by in the OPE expansion such that when by is small, b, behaves as by

But when by grows large, b, approaches a maximum value chosen to limit the large-b; spoiling OPE

(e}

(e}

Additionally, in the calculation of the hard coefficient €, the appropriate scale is determined by the size of b,

Fo = p.(br)

(e}

Where C; is commonly 2e7VE




Full Evolution and OPE

o The evolution occurs in exponentials multiplied by the OPE piece

A

Y

~ 1 R

~ dz ~ . .

Ft/p(z,br;p, (r) = —Cy/ (@&, ba; i, o, 9(111)) f/p (&, 1)
~Js &

C
coxp (1o Y R i) + [ #i[ >;1>—1n\fj_f’vK<g<u'>>]}xexp{gj/p<x,bT>+gK<bT>1n */gf}

o The A term represents the OPE
o The B term represents the perturbatively calculable evolution of the OPE

o The Cterm represents the non-perturbative physics of the TMD (usually Gaussians), that need to be
parameterized in a fit




Coefficient Functions

+5(1 — ) [_%

oo b o) = S (201 = 2001 = )] [1n (2] — e + 2001 = ) ) + O

™




Anomalous Dimensions

o The anomalous dimensions appear in the B term

C 3
ve(p; Cr/p?) = as% (5 —In (%)) +0(a?).
asCr

+ O(a?).

Vi (1) = 2—




When by is too small

o There is not only a problem when b; goes too large (which is fixed by the b, prescription)

2 .
;exp{ ‘fb_F (b*;ﬂb)+L5%[7F(g(ﬂl); 1) — \f_F (g(u))}}

o One can see the limits of integration on the u' integral
o If by is too small, up, will grow as y, ~ 1/by

o The limits of integration will flip for a given p, and the sign will change in the exponent - NOT GOOD

o Use the b, prescription, where \/b2 + b2 /(C5Q)?

o At avery small by, there will be some b,,;,, that it will approach

bmin bT < bmin
b* (bc(b’[‘)) — bT bmin < bT < bmax
bmax bT > bmax .

o Combine them




Some Fitting

o Can describe the low-q; data
well using TMD formulation
o W DY (E615)

Dashed lines are with systematic
shift

Success by Vladimirov
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Success is
regions

o Previous attempts have been made to describe both high- and low-q; data
o Vladimirov was able to describe low-qr, we are able to describe large qr
o SIDIS has been described with the low-q, but the fixed order is not described well:

o Lots of matching must occur. i.e. the large and small by regions, and the FO to the W
at intermediate gy

o The m-induced DY has hope to be able to describe both regions because there has
been individual success in the both regions

Difficult to describe both

10t
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