Pion Updates

Patrick Barry Group Meeting 4/24/2020

Outline

- 1. p_T -dependent DY review
- 2. Stability of PDFs
- 3. Pion vs Proton Structure
- 4. TMDs

Leading Order Diagrams

Drell-Yan (DY)

• p_T dependent DY

$$\frac{d\sigma}{dQ^2 dy dq_T^2} = \sum_{ab} \int_{x_{a,\min}}^1 dx_a \frac{x_a x_b}{x_a - 1} f_{a/A}(x_a, \mu^2) f_{b/B}(x_b, \mu^2) \frac{d\hat{\sigma}_{ab}}{dQ^2 d\hat{t}}$$

Here, y is the rapidity, Q^2 is the invariant mass squared of the virtual photon, q_T is the transverse momentum of the virtual photon

Ambiguity of Scale

- In Collinear Factorization, one needs a hard scale that is $\mu \gg \Lambda$, where μ is a hard, partonic scale, and Λ is a scale associated with soft, non-perturbative physics
- $\circ\,$ In DIS, for instance, one hard scale exists, $Q^2,$ which is the invariant mass of the virtual photon
- \circ In DY, again, only one hard scale exists, Q^2
- \circ However, in the q_T -dependent DY, two scales exist
 - $\,\circ\,$ The invariant mass of the dilepton pair, Q^2 is measured, but also the transverse momentum of the dilepton pair, p_T
 - Which scale is appropriate?

Exploration of Scale

• We performed fits with $\mu = Q$, and had trouble fitting the q_T -dependent data

number of	renlicas - 2	50pp] Saving	file at /Fit	ter.i	oynb		l	רוא ומאר
		kApp] Kernel						
summary of	resultsFina	l/step13a ^{nel}						
[I 17:15:0								
prediction	reaction	kApp] idx nel		col	onpts	0b6-41f chi2 0	1chi2/npts6672	norm
False	1.294 Not lh oo	kApp 1000ing		ter H1	oynb 58	24.43	0.42	1.27
False	1.434 Not ln oc	2000 ing		ZEUS	oynb 50	78.91	1.58	0.94
False	dy-pion	10001 ind		E615	ovnb42	37.21	0.89	1.11
False	dy-pion	10002		NA10	3b88 34 3	B-d0b620157	-b5a1-a 0.61 e586	672 0.91
False	dy-pion	10003 tor		NA10	c8b20	053-d014.13	b-b5a10.7140e5	8660.85
False	pion_qT	1001		E615	34 sha 24	-d0b6 51.91	-b5a1-d 1.53 e586	770.50
False	pion_qT	1002		E615	c8b 49	172.45	b-b5a1 3.52 40e5	866 0.50
[1 00:30:5 [1 00:30:5]	4.745 Noteboo 6.479 Noteboo	kApp] Starti kApp] Restor	ng buffering ing connectio	for ca on for	287	399.61	b5a1-dc440e586 b-b5a1 ¹ .3940e5	672:2b3 86672:2

Exploration of Scale

• We performed fits with $\mu = q_T/2$, and had much better success

number of	replicas = 9	99						
2020 02 06	0.545 NOTEDOO	KAPP] Kern						
summary of	<pre>cresultsFina</pre>	L/step13b						
o use: AVAZ	2 FMA 22-53-00-670	Mallin, trans		ronnes Romai 1 e a (= 1 1	Z callery	- /		on-E615rat-13.pp;
prediction	25reaction/0	910: 1 10X N		compiler/cou/	Subtsc	e/servcnæzc	cni2/npts	servicnorm/
e tha Ealse	will be ln ed). De 1000 s		H1	58	22.52	0.39	1.26
2020- False	23:52:00 ln 70	932: 2000 n		compilerZEUS,	/ser 50 c	e/ser 73.22 c	c:176]1.46	treamEx0:95o
False	55dy-pion	10001		t /FittE615	ovnb42	37.03	0.88	1.05
False	dy-pion	10002		t /FittNA10	ovnb34	18.53	0.54	0.86
False	dy-pion	10003		+ /Fi++NA10	vnh20	14.11	0.71	0.80
False	pion_qT	1001		E615	whb34	37.86	1.11	1.11
False	pion_qT	1002		E615	ynb 49	40.49	0.83	0.51
LI 00:05:13 TI 00:05:56	3.097 Noteboo .556 Noteboo	kApp] Kern kApp] Savi	el intern ng file d	upted: a504 it /Fitter.ip	287	243.74	0.85	1539

Why $q_T/2?$

- We see that the χ^2 for the q_T -dependent DY datasets are considerably lower for the choice $\mu = q_T/2$ than $\mu = Q$
- $\,\circ\,\,$ Recall that data is underpredicted by over a factor of 2 when $\mu=Q$
- Such a large normalization correction is unsettling and could point to the need for higher order terms
- However, when $\mu = q_T/2$, the normalization for the $\frac{d\sigma}{dQdq_T}$ data is within the reported normalization uncertainty $(\frac{d\sigma}{dQdq_T}$ still has norm=0.51)

Why $q_T/2?$

- Recall Dave Soper's lectures
- The full Δ does *not* depend on μ
- In a perturbative analysis, one wants to suppress higher order corrections to get closer to the full Δ
- A choice of µ = Q here eliminates the logs, but other constant terms may still be present
- Perhaps in our case, there exist higher order terms with logs of μ^2/q_T^2

The choice of scale

• Our example: $e^+e^- \rightarrow \gamma^* \rightarrow$ hadrons

$$\sigma_{\rm tot} = \frac{4\pi\alpha^2}{Q^2} \left(\sum e_f^2\right) \left[1 + \Delta\right]$$

$$\begin{aligned} \Delta(\mu) &= \\ \frac{\alpha_s(\mu)}{\pi} + \left[1.4092 + 1.9167 \log\left(\frac{\mu^2}{Q^2}\right)\right] \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 \\ + \left[-12.805 + 7.8179 \log\left(\frac{\mu^2}{Q^2}\right) + 3.674 \log^2\left(\frac{\mu^2}{Q^2}\right)\right] \\ \times \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 \\ + \cdots \end{aligned}$$

Is q_T a safe scale?

- A scale should be related to some hard scale in the measurements in order to suppress $O(\frac{\Lambda^2}{Q^2})$ terms and make factorization
- Following renormalization group equations, as in α_S , one should keep Lorentz invariance as much as possible
- Examples of Lorentz invariants are 4-momenta squared, or dot products of 4-momenta (like Q^2 or Mandelstam s, t, and u)
- However, q_T is dependent on reference frame!
 - If change from the hadron-hadron COM, transverse momentum takes on a different meaning
 - Looking at the photon rest frame, there is no transverse momentum!
- In the hadron-hadron COM frame, however, q_T^2 is an invariant quantity

Kinematics of q_T^2

• We can describe all of momentum squared and dot products of the 4 particle momenta that are involved

$$p_a = x_a P_A = \left(x_a \frac{\sqrt{s}}{2}, \vec{0}_\perp, x_a \frac{\sqrt{s}}{2}\right)$$
$$p_b = x_b P_B = \left(x_b \frac{\sqrt{s}}{2}, \vec{0}_\perp, -x_b \frac{\sqrt{s}}{2}\right)$$
$$p_{\gamma^*} = p_{\mu\bar{\mu}} = (E, \vec{p}_T, p_L)$$
$$E = \sqrt{Q^2 + p_T^2 + p_L}$$

Kinematics of q_T^2

• We can describe all of momentum squared and dot products of the 4 particle momenta that are involved

$$x_E = \frac{2E}{\sqrt{s}} = x_1 + x_2$$
$$x_T = \frac{2p_T}{\sqrt{s}}$$
$$x_L = x_F = \frac{2p_L}{\sqrt{s}} = x_1 - x_2$$
$$x_1 = -(u - Q^2)/s = \frac{1}{2}(x_T^2 + 4\tau)^{1/2}e^Y$$
$$x_2 = -(t - Q^2)/s = \frac{1}{2}(x_T^2 + 4\tau)^{1/2}e^{-Y}$$

Kinematics of q_T^2

• We can describe all of momentum squared and dot products of the 4 particle momenta that are involved

$$p_{g} = p_{a} + p_{b} - p_{\mu\bar{\mu}}$$

$$= ((x_{a} + x_{b})\frac{\sqrt{s}}{2} - E, -\vec{p}_{T}, (x_{a} - x_{b})\frac{\sqrt{s}}{2} - p_{L})$$

$$= \frac{\sqrt{s}}{2}(x_{a} + x_{b} - x_{E}, -\vec{x}_{T}, x_{a} - x_{b} - x_{L})$$

$$= \frac{\sqrt{s}}{2}(x_{a} + x_{b} - x_{1} - x_{2}, -\vec{x}_{T}, x_{a} - x_{b} - x_{1} + x_{2})$$

Invariant momenta and dot products

Invariant q_T^2

$$p_{g} \cdot p_{\mu\bar{\mu}} = \frac{s}{4} (x_{E}, \vec{x}_{T}, x_{L}) \cdot (x_{a} + x_{b} - x_{1} - x_{2}, -\vec{x}_{T}, x_{a} - x_{b} - x_{1} + x_{2})$$

$$= \frac{s}{4} (x_{a}x_{1} + x_{b}x_{1} - x_{1}^{2} - x_{1}x_{2} + x_{a}x_{2} + x_{b}x_{2} - x_{1}x_{2} - x_{2}^{2} + x_{T}^{2})$$

$$= \frac{s}{2} (x_{1}(x_{b} - x_{2}) + x_{2}(x_{a} - x_{1}) + \frac{x_{T}^{2}}{2})$$

$$p_{q} \qquad p_{q} \qquad p_{g}$$

$$p_{\bar{q}} \qquad p_{g}$$

$$\begin{aligned} \text{Invariant } \boldsymbol{q}_{T}^{2} \\ (p_{a} + p_{b})^{2} &= \hat{s} = (p_{\mu\bar{\mu}} + p_{g})^{2} \\ &= \frac{s}{2} \Big[\frac{Q^{2} - u}{s} (\frac{Q^{2} - \hat{u}}{Q^{2} - u} - \frac{Q^{2} - t}{s}) + \frac{Q^{2} - t}{s} (\frac{Q^{2} - \hat{t}}{Q^{2} - t} - \frac{Q^{2} - u}{s}) + \frac{x_{T}^{2}}{2} \Big] \end{aligned}$$

$$\begin{split} p_T^2 &= \frac{x_T^2 s}{4} \\ &= \frac{\hat{s} - Q^2}{2} - \frac{s}{2} \Big[\frac{Q^2 - \hat{u}}{s} - \frac{(Q^2 - u)(Q^2 - t)}{s^2} + \frac{Q^2 - \hat{t}}{s} - \frac{(Q^2 - t)(Q^2 - u)}{s^2} \Big] \\ &= \frac{1}{2} \Big[(\hat{s} + \hat{t} + \hat{u} - Q^2) - 2Q^2 + \frac{2}{s}(Q^4 - uQ^2 - tQ^2 + ut) \Big] \\ &= \frac{1}{s} (-Q^2(s + u + t) + Q^4 + ut) \\ &= \frac{1}{s} (-Q^2(Q^2 + p_X^2) + Q^4 + ut) \\ &= \frac{ut - Q^2 p_X^2}{s} \end{split}$$

Form of p_T^2

 $^{\circ}$ The result $p_{T}^{2}=\frac{ut-Q^{2}p_{X}^{2}}{s}$

can be connected with prompt photon and the exclusive process

• In prompt photon, the emitted photon in hadron-hadron collisions is real and measured, and thus $Q^2 = 0$

 \circ In the exclusive process, no other hadrons are emitted, meaning $p_X^2 = 0$

A note on the x_F cut

• We choose the maximum $x_F = 0.6$ so that we don't run into a region where the $O(\alpha_S)$ terms are a major contributor of the cross-section

Stability with respect to scale

• We find that regardless of the scale dependence you use to fit the *q*_T-dependent DY data, the PDFs remain the same

Stability with respect to cuts on x_F

• Even though we want to avoid problematic regions in x_F , we can explore the stability of the PDFs

• That the PDFs don't change as a function of the cut on x_F is reassuring and we keep $x_{F,max} = 0.6$

Does the q_T -dependent data affect the PDFs?

- We would like to see the impact of the q_T -data on the PDFs
- We see the central values change considerably with the inclusion of LN data, but when we add the q_T -data, barely anything changes

How about the uncertainties?

• Looking at the uncertainties of the PDFs, we can see how much of an effect the q_T -dependent DY has

• Uncertainties don't change much either

If not much changes, how about making predictions?

- We can use the PDFs extracted from DY+LN data only to attempt to describe the q_T dependent DY data
- The same cannot be said for the x_F-dependent data as the normalization for the fit is 0.51
- However, if we use 0.51 for the normalization for the prediction, we end up with a good description ($\chi^2 = 0.91$ vs $\chi^2 = 0.83$ for full fit)

Pion vs Proton Structure

Consider the momentum fraction

 Flavor
 Pion $\langle x_{\pi} \rangle_{\text{flavor}}$ Proton $\langle x \rangle_{\text{flavor}}$

 valence
 0.528 ± 0.0161 0.481 ± 0.0026

 sea
 0.165 ± 0.0429 0.147 ± 0.0038

 gluon
 0.299 ± 0.0712 0.372 ± 0.0032

Gluon distributions

• This question was asked at my prelim!

High *x*-region doesn't agree

- The slope of the gluon is rather consistent whether it's pion or proton
- The DGLAP equations of evolution is the same why the generation of gluons in likely similar
- However, the large momentum fraction range isn't good agreement

F₂ Structure Functions

- Specifically in the ZEUS paper, we can see some attempts to equate F_2^p with F_2^π
- Here, the GRV pion PDFs are used to construct F_2^{π}
 - This is problematic, because GRV only parameterizes the PDF using high- x_{π} data (DY and prompt photon)
- $\circ F_2^p$ is scaled by 0.361

The ZEUS method - normalization

• If we multiply the F_2^p (generated by JAM19 PDFs) by 0.6, we get the following plot

The ZEUS method - normalization

The Nikolaev, Speth, and Zoller (NSZ) method

- A parameterization of the proton's structure function in relation to the pion's structure function as $F_2^p(x, Q^2) = \frac{2}{3}F_2^{\pi}\left(\frac{2}{3}x, Q^2\right)$
- Used a color-dipole BFKL-Regge expansion

Normalized NSZ

Channel-by-channel contributions - DY

- I show the contributions to the observable in terms of the degrees of freedom of the fit, *i.e.* the valence quark, sea quark, and gluon distributions
- Gluon is negligible

Channel-by-channel contribution - LN

 Sea quark and gluon distributions are much larger

Channel-by-channel contribution DY- q_T

• The hypothesis was that by including the q_T -dependent DY data, we constrain better the gluon in the large- x_π region

Channel-by-channel contribution DY- q_T

• The hypothesis was that by including the q_T -dependent DY data, we constrain better the gluon in the large- x_π region

If we had pW data in the same way as πW

• Can use kinematics and tungsten PDF to determine predictions for channel-by channel in the Proton

Is low- x_F suitable to constrain π gluon?

Recall $x_F = 2\sqrt{\tau} \sinh Y$, where Y is the rapidity.

If $x_F \to 0$, then $Y \to 0$.

We already know that the cross section levels off near Y = 0, so very small x_F will not change the constraints!

Are there any kinematic regions?

- We want to be able to constrain the gluon well at any kinematics, but is this possible?
- We make a theoretical triply differential plot as a function of Q^2 at the lowest q_T that we feel comfortable in the FO regime
- Vertical dotted lines are experimental bookends
- Need to go to very low Q² to get 10% contribution of the cross section from the gluon
- **Hopeless** to constrain the gluon with q_T -dependent DY

Still Hope for the proton!

There is still merit to studying pioninduced q_T -dependent DY data

TMD Factorization

Much of the following has been taken from Aybat, Rogers, Phys. Rev. **D83** :114042, (2011).

Field's book

• Field's book has some *primordial* motion inside the incoming hadrons to describe the low- q_T data

• The incoming partons here have some initial transverse momentum

• Primordial terms were usually shown as some Gaussian, such as $f(k_T^2) = \frac{1}{4\pi\sigma_q^2} \exp\left(-\frac{k_T^2}{4\sigma_q^2}\right)$

Asymptotic term

 As first shown in Collins, Soper, Sterman, Nuclear Phys. B250 (1985) 199-224, there was a term, Y, different from the purely TMD W

$$\frac{d\sigma}{dQ^{2}dydQ_{T}^{2}} \sim \frac{4\pi^{2}\alpha^{2}}{9Q^{2}s} \left\{ (2\pi)^{-2} \int d^{2}b \, e^{iQ_{T} \cdot b} \bar{W}(b;Q,x_{A},x_{B}) + Y(Q_{T};Q,x_{A},x_{B}) \right\}.$$
The *W* term describes low- q_{T} physics;
Associated with TMDs

- Y is the fixed order term minus the asymptotic term. Y = FO AY
- At very low q_T , the fixed order and asymptotic terms should *cancel*, leaving only the TMD physics
- At very high q_T , the TMD terms and asymptotic terms should *cancel*, leaving only the fixed-order physics

Asymptotic Term Form

• This is what the asymptotic term looks like

$$\begin{aligned} AY(q_T, Q, x_a, x_b) &= \sum_{a, b} \int_{x_a}^1 \frac{d\xi_a}{\xi_a} \int_{x_b}^1 \frac{d\xi_b}{\xi_b} \sum_{N=1}^\infty \left(\frac{\alpha_S(\mu)}{\pi}\right)^N \\ &\times R_{ab}^{(N)} f_{a/A}(\xi_a, \mu) f_{b/B}(\xi_b, \mu) \end{aligned}$$

Hard physics that follows the limit of the fixed order as $q_T \to 0$

Asymptotic Term

$$\begin{aligned} R_{q\bar{q}}^{(1)} &= R_{\bar{q}q}^{(1)} = \frac{2e_q^2}{3\pi q_T^2} \Big[2\delta(1-z_a)\delta(1-z_b) [\log\left(\frac{Q^2}{q_T^2}\right) - \frac{3}{2}] \\ &+ \delta(1-z_a) \Big[\frac{1+z_b^2}{1-z_b} \Big]_+ + \delta(1-z_b) \Big[\frac{1+z_a^2}{1-z_a} \Big]_+ \Big] \\ R_{qg}^{(1)} &= R_{\bar{q}g}^{(1)} = \frac{e_q^2}{4\pi q_T^2} \Big[z_b^2 + (1-z_b)^2 \Big] \delta(1-z_a) \\ R_{gq}^{(1)} &= R_{g\bar{q}}^{(1)} = \frac{e_q^2}{4\pi q_T^2} \Big[z_a^2 + (1-z_a)^2 \Big] \delta(1-z_b) \\ &z_a = \frac{x_a}{\xi_a}, z_b = \frac{x_b}{\xi_b} \end{aligned}$$

Asymptotic – plus term

 Have to treat the plus term correctly with the lower bound ≠ 0

$$\int_{x_b}^1 \frac{dz_b}{z_b} \left[\frac{1+z_b^2}{1-z_b}\right]_+ f_a(x_a) f_b(\frac{x_b}{z_b}) = \int_0^1 \frac{dz_b}{z_b} \left[\frac{1+z_b^2}{1-z_b}\right]_+ f_a(x_a) f_b(\frac{x_b}{z_b}) - \int_0^{x_b} \frac{dz_b}{z_b} \left[\frac{1+z_b^2}{1-z_b}\right]_+ f_a(x_a) f_b(\frac{x_b}{z_b})$$

$$\int_0^1 \frac{dz_b}{z_b} \Big[\frac{1+z_b^2}{1-z_b} \Big]_+ f_a(x_a) f_b(\frac{x_b}{z_b}) = \int_0^1 dz_b \frac{1+z_b^2}{1-z_b} f_a(x_a) \Big(\frac{f_b(\frac{x_b}{z_b})}{z_b} - f_b(x_b) \Big)$$

$$\int_0^{x_b} \frac{dz_b}{z_b} \left[\frac{1+z_b^2}{1-z_b}\right]_+ f_a(x_a) f_b(\frac{x_b}{z_b}) = \int_0^{x_b} \frac{dz_b}{z_b} \left[\frac{1+z_b^2}{1-z_b}\right] f_a(x_a) f_b(\frac{x_b}{z_b})$$

Asymptotic - plus term

$$\begin{split} \int_{x_b}^1 \frac{dz_b}{z_b} \big[\frac{1+z_b^2}{1-z_b} \big]_+ f_a(x_a) f_b(\frac{x_b}{z_b}) &= \int_0^{x_b} dz_b \frac{1+z_b^2}{1-z_b} f_a(x_a) \Big(\frac{f_b(\frac{x_b}{z_b})}{z_b} - f_b(x_b) \Big) \\ &+ \int_{x_b}^1 dz_b \frac{1+z_b^2}{1-z_b} f_a(x_a) \Big(\frac{f_b(\frac{x_b}{z_b})}{z_b} - f_b(x_b) \Big) \\ &- \int_0^{x_b} \frac{dz_b}{z_b} \big[\frac{1+z_b^2}{1-z_b} \big] f_a(x_a) f_b(\frac{x_b}{z_b}) \\ &\int_{x_b}^1 \frac{dz_b}{z_b} \big[\frac{1+z_b^2}{1-z_b} \big]_+ f_a(x_a) f_b(\frac{x_b}{z_b}) \\ &= \int_{x_b}^1 dz_b \frac{1+z_b^2}{1-z_b} f_a(x_a) \Big(\frac{f_b(\frac{x_b}{z_b})}{z_b} - f_b(x_b) \Big) \\ &- f_a(x_a) f_b(x_b) \int_0^{x_b} dz_b \frac{1+z_b^2}{1-z_b} \\ &= \int_{x_b}^1 dz_b \frac{1+z_b^2}{1-z_b} f_a(x_a) \Big(\frac{f_b(\frac{x_b}{z_b})}{z_b} - f_b(x_b) \Big) \\ &+ f_a(x_a) f_b(x_b) \big[\frac{1}{2} x_b(2+x_b) + 2 \log(1-x_b) \big] \\ \end{split}$$

Comparison with data

- At low q_T, we can see that the asymptotic and fixed order curves match exactly
- The asymptotic term does not do a good job of describing the data
- $^{\circ}$ Mostly to negate the fixed order or W term at the ends of the p_T spectrum

TMD factorization setup

• We can look to SIDIS (Semi-Inclusive Deep Inelastic Scattering) as a natural language for TMD physics

$$\begin{split} W^{\mu\nu} &= \sum_{f} |\mathcal{H}_{f}(Q;\mu)^{2}|^{\mu\nu} \times \\ \int d^{2}\mathbf{k}_{1T} \, d^{2}\mathbf{k}_{2T} \, F_{f/p}(x,\mathbf{k}_{1T};\mu;\zeta_{F}) \, D_{h/f}(z,z\mathbf{k}_{2T};\mu;\zeta_{D}) \times \\ &\times \delta^{(2)}(\mathbf{k}_{1T}+\mathbf{q}_{T}-\mathbf{k}_{2T}) \end{split}$$

- Here, \mathcal{H}_f are the hard parts, and the integration is for the soft parts over the external k_T
- $F_{f/p}$ is the TMDPDF of the proton
- $\circ D_{h/f}$ is the TMDFF for detected hadrons
- Note the two scales μ -for renormalization group equations, and ζ for solving CSS equations (for rapidity evolution)

A Brief Word on Divergences

- Wilson lines are buried in the definition of the TMDs
- TMD correlation functions contain light-cone divergences when Wilson lines point in exactly light-like directions

$$W(\infty,x;n)=P\exp\left[-ig_0\int_0^\infty ds\;n\cdot A^a_0(x+sn)t^a
ight]$$

• Can point the *n* vector off the light cone a little bit to avoid divergence

$$n_{\rm A} = (1, -e^{-2y_{\rm A}}, \mathbf{0}_t)$$
 $n_{\rm B} = (-e^{2y_{\rm B}}, 1, \mathbf{0}_t).$

• They tilted Wilson line directions are space-like: $n^2 < 0$

TMDs in **b**-space

• While the interpretation of TMDs are in momentum-space (intrinsic transverse momentum of partons), the TMD evolution equations and factorization are more appropriate in b_T -space

 $\circ b_T$ is the Fourier conjugate of k_T

$$W^{\mu\nu} = \sum_{f} |\mathcal{H}_{f}(Q;\mu)^{2}|^{\mu\nu} \int d^{2}\mathbf{k}_{1T} d^{2}\mathbf{k}_{2T} \delta^{(2)}(\mathbf{k}_{1T} + \mathbf{q}_{T} - \mathbf{k}_{2T})$$

$$\times F_{f/p}(x,\mathbf{k}_{1T};\mu;\zeta_{F}) D_{h/f}(z,z\mathbf{k}_{2T};\mu;\zeta_{D})$$

$$= \sum_{f} |\mathcal{H}_{f}(Q;\mu)^{2}|^{\mu\nu} \int \frac{d^{2}\mathbf{b}_{T}}{(2\pi)^{2}} e^{-i\mathbf{q}_{T}\cdot\mathbf{b}_{T}}$$

$$\times \tilde{F}_{f/p}(x,\mathbf{b}_{T};\mu;\zeta_{F}) \tilde{D}_{h/f}(z,\mathbf{b}_{T};\mu;\zeta_{D}). \quad (9)$$

• Will be working with \tilde{F} and \tilde{D} in *b* space

Evolution

 \circ We see the evolution with respect to the "rapidity" scale ζ

$$rac{\partial \ln ilde{F}(x, \mathbf{b}_T; \mu, \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = ilde{K}(\mathbf{b}_T; \mu)$$

• Calculable in perturbation theory

$$\tilde{K}(\mu, b_T) = -\frac{\alpha_S(\mu)C_F}{\pi} \left[\log(\mu^2 b_T^2) - \log(4) + 2\gamma_E \right] = -\frac{\alpha_S(\mu)C_F}{\pi} \left[\log\left(\frac{\mu b_T}{b_0}\right)^2 \right]$$
 $b_0 = \frac{2}{e^{\gamma_E}}$

• Reason in the 2nd form is that it's common to choose scale $\mu = \frac{b_0}{b_T}$ such that $\widetilde{K} = 0$

Small-**b**_T

- At small b_T (large k_T), one can write the TMD PDF in terms of collinear PDFs
- A convolution of the PDF and a perturbatively calculable coefficient function
- This expansion is known as (operator product expansion) OPE

$$egin{aligned} & ilde{F}_{f/P}(x,\mathbf{b}_T;\mu,\zeta_F) = \ &= \sum_j \int_x^1 rac{d\hat{x}}{\hat{x}} ilde{C}_{f/j}(x/\hat{x},b_T;\zeta_F,\mu,g(\mu)) f_{j/P}(\hat{x};\mu) \ &+ \mathcal{O}((\Lambda_{ ext{QCD}}b_T)^a). \end{aligned}$$

- When b_T gets large ($b_T \gtrsim \Lambda_{QCD}^{-1}$), expansion breaks down
- Would need to incorporate intrinsic k_T behavior in the hadron non-perturbatively
- \circ Large b_T -dependence cannot be calculated by pQCD, but the scale dependence can be handled

b_{*}

- \circ Recall, however, that the W term is a Fourier transform, and one must integrate **all** b_T
- To combat it, a prescription is adopted,

$$\mathbf{b}_*(\mathbf{b}_T) \equiv rac{\mathbf{b}_T}{\sqrt{1+b_T^2/b_{ ext{max}}^2}}.$$

- Where b_* replaces b_T in the OPE expansion such that when b_T is small, b_* behaves as b_T
- But when b_T grows large, b_* approaches a maximum value chosen to limit the large- b_T spoiling OPE
- \circ Additionally, in the calculation of the hard coefficient $ilde{C}$, the appropriate scale is determined by the size of b_*

$$\mu_b = \frac{C_1}{b_*(\mathbf{b}_T)}.$$

 \circ Where C_1 is commonly $2e^{-\gamma_E}$

Full Evolution and OPE

• The evolution occurs in exponentials multiplied by the OPE piece

$$\begin{split} \tilde{F}_{f/P}(x,\mathbf{b}_{T};\boldsymbol{\mu},\zeta_{F}) = & \overbrace{\sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{f/j}(x/\hat{x},b_{*};\boldsymbol{\mu}_{b}^{2},\boldsymbol{\mu}_{b},g(\boldsymbol{\mu}_{b}))f_{j/P}(\hat{x},\boldsymbol{\mu}_{b})}^{\mathbf{A}}}_{\mathbf{X} \exp\left\{\ln\frac{\sqrt{\zeta_{F}}}{\mu_{b}}\tilde{K}(b_{*};\boldsymbol{\mu}_{b}) + \int_{\boldsymbol{\mu}_{b}}^{\boldsymbol{\mu}} \frac{d\boldsymbol{\mu}'}{\boldsymbol{\mu}'} \left[\gamma_{F}(g(\boldsymbol{\mu}');1) - \ln\frac{\sqrt{\zeta_{F}}}{\mu'}\gamma_{K}(g(\boldsymbol{\mu}'))\right]\right\}} \times \underbrace{\exp\left\{g_{j/P}(x,b_{T}) + g_{K}(b_{T})\ln\frac{\sqrt{\zeta_{F}}}{\sqrt{\zeta_{F,0}}}\right\}}_{\mathbf{X} \exp\left\{\frac{1}{2}\sum_{j=1}^{N} \frac{1}{2}\sum_{j=1}^{N} \frac{1}{2$$

- The **A** term represents the OPE
- The **B** term represents the perturbatively calculable evolution of the OPE
- The **C** term represents the non-perturbative physics of the TMD (usually Gaussians), that need to be parameterized in a fit

Coefficient Functions

$$\begin{split} \tilde{C}_{j'/j}(x, \mathbf{b}_T; \mu; \zeta_F/\mu^2) &= \delta_{j'j} \delta(1-x) + \delta_{j'j} \frac{\alpha_s C_F}{2\pi} \left\{ 2 \left[\ln \left(\frac{2}{\mu b_T} \right) - \gamma_E \right] \left[\left(\frac{2}{1-x} \right)_+ - 1 - x \right] + 1 - x + \right. \\ &\left. + \delta(1-x) \left[-\frac{1}{2} \left[\ln \left(b_T^2 \mu^2 \right) - 2(\ln 2 - \gamma_E) \right]^2 - \left[\ln (b_T^2 \mu^2) - 2(\ln 2 - \gamma_E) \right] \ln \left(\frac{\zeta_F}{\mu^2} \right) \right] \right\} + \mathcal{O}(\alpha_s^2). \end{split}$$

$$\tilde{C}_{j'/g}(x,\mathbf{b}_T;\mu;\zeta_F/\mu^2) = \frac{\alpha_s T_{\rm f}}{2\pi} \left(2\left[1-2x(1-x)\right] \left[\ln\left(\frac{2}{b_{\rm T}\mu}\right) - \gamma_{\rm E} \right] + 2x(1-x) \right) + \mathcal{O}(\alpha_s^2)$$

Anomalous Dimensions

 $\circ~$ The anomalous dimensions appear in the ${\bf B}$ term

$$\gamma_{
m F}(\mu;\zeta_F/\mu^2) = lpha_s rac{C_{
m F}}{\pi} \left(rac{3}{2} - \ln\left(rac{\zeta_F}{\mu^2}
ight)
ight) + \mathcal{O}(lpha_s^2).$$

$$\gamma_K(\mu) = 2rac{lpha_s C_F}{\pi} + \mathcal{O}(lpha_s^2)$$

When b_T is too small

• There is not only a problem when b_T goes too large (which is fixed by the b_* prescription)

$$\overbrace{\times \exp\left\{\ln\frac{\sqrt{\zeta_F}}{\mu_b}\tilde{K}(b_*;\mu_b) + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F(g(\mu');1) - \ln\frac{\sqrt{\zeta_F}}{\mu'}\gamma_K(g(\mu'))\right]\right\}}^{\mathrm{B}}$$

- \circ One can see the limits of integration on the μ' integral
- \circ If b_T is too small, μ_b will grow as $\mu_b \sim 1/b_T$
- The limits of integration will flip for a given μ , and the sign will change in the exponent NOT GOOD
- Use the b_c prescription, where $b_c(b_{\rm T}) = \sqrt{b_{\rm T}^2 + b_0^2/(C_5Q)^2}$.
- At a very small b_T , there will be some b_{min} that it will approach

$$b_*(b_c(b_{\mathrm{T}})) \longrightarrow \begin{cases} b_{\min} & b_{\mathrm{T}} \ll b_{\min} \\ b_{\mathrm{T}} & b_{\min} \ll b_{\mathrm{T}} \ll b_{\max} \\ b_{\max} & b_{\mathrm{T}} \gg b_{\max} . \end{cases} \circ \text{ Combine them}$$

Some Fitting Success by Vladimirov

- Can describe the low-q_T data well using TMD formulation
- *πW* DY (E615)
- Dashed lines are with systematic shift

Success is Difficult to describe both regions

- \circ Previous attempts have been made to describe both high- and low- q_T data
- \circ Vladimirov was able to describe low- q_T , we are able to describe large q_T
- SIDIS has been described with the low- q_T , but the fixed order is not described well:
- $^\circ\,$ Lots of matching must occur. i.e. the large and small b_T regions, and the FO to the W at intermediate q_T
- The π -induced DY has hope to be able to describe both regions because there has been individual success in the both regions

