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In bringing together relativity and Maxwell’s equations, we have finished our main work on the theory of electromagnetism. There are, of course, some details
we have skipped over and one large area that we will be concerned with in the future—the interaction of electromagnetic fields with matter. But we want to
stop for a moment to show you that this tremendous edifice, which is such a beautiful success in explaining so many phenomena, ultimately falls on its face.
When you follow any of our physics too far, you find that it always gets into some kind of trouble. Now we want to discuss a serious trouble—the failure of
the classical electromagnetic theory. You can appreciate that there is a failure of all classical physics because of the quantum-mechanical effects. Classical
mechanics is a mathematically consistent theory; it just doesn’t agree with experience. It is interesting, though, that the classical theory of electromagnetism is
an unsatisfactory theory all by itself. There are difficulties associated with the ideas of Maxwell’s theory which are not solved by and not directly associated
with quantum mechanics. You may say, “Perhaps there’s no use worrying about these difficulties. Since the quantum mechanics is going to change the laws of
electrodynamics, we should wait to see what difficulties there are after the modification.” However, when electromagnetism is joined to quantum mechanics,
the difficulties remain. So it will not be a waste of our time now to look at what these difficulties are. Also, they are of great historical importance.
Furthermore, you may get some feeling of accomplishment from being able to go far enough with the theory to see everything—including all of its troubles.

The difficulty we speak of is associated with the concepts of electromagnetic momentum and energy, when applied to the electron or any charged particle. The
concepts of simple charged particles and the electromagnetic field are in some way inconsistent. To describe the difficulty, we begin by doing some exercises
with our energy and momentum concepts.

First, we compute the energy of a charged particle. Suppose we take a simple model of an electron in which all of its charge   is uniformly distributed on the
surface of a sphere of radius  , which we may take to be zero for the special case of a point charge. Now let’s calculate the energy in the electromagnetic field.
If the charge is standing still, there is no magnetic field, and the energy per unit volume is proportional to the square of the electric field. The magnitude of the
electric field is  , and the energy density is

To get the total energy, we must integrate this density over all space. Using the volume element  , the total energy, which we will call  , is

This is readily integrated. The lower limit is  , and the upper limit is  , so

If we use the electronic charge   for   and the symbol   for  , then

It is all fine until we set  equal to zero for a point charge—there’s the great difficulty. Because the energy of the field varies inversely as the fourth power of
the distance from the center, its volume integral is infinite. There is an infinite amount of energy in the field surrounding a point charge.

What’s wrong with an infinite energy? If the energy can’t get out, but must stay there forever, is there any real difficulty with an infinite energy? Of course, a
quantity that comes out infinite may be annoying, but what really matters is only whether there are any observable physical effects. To answer that question,



cannot, unfortunately, demonstrate for you here that the difficulties are really basically the same, because we have developed so little of the theory of quantum
mechanics and even less of quantum electrodynamics. So you must just take our word that the quantized theory of Maxwell’s electrodynamics gives an
infinite mass for a point electron.

It turns out, however, that nobody has ever succeeded in making a self-consistent quantum theory out of any of the modified theories. Born and Infeld’s ideas
have never been satisfactorily made into a quantum theory. The theories with the advanced and retarded waves of Dirac, or of Wheeler and Feynman, have
never been made into a satisfactory quantum theory. The theory of Bopp has never been made into a satisfactory quantum theory. So today, there is no known
solution to this problem. We do not know how to make a consistent theory—including the quantum mechanics—which does not produce an infinity for the
self-energy of an electron, or any point charge. And at the same time, there is no satisfactory theory that describes a non-point charge. It’s an unsolved
problem.

In case you are deciding to rush off to make a theory in which the action of an electron on itself is completely removed, so that electromagnetic mass is no
longer meaningful, and then to make a quantum theory of it, you should be warned that you are certain to be in trouble. There is definite experimental
evidence of the existence of electromagnetic inertia—there is evidence that some of the mass of charged particles is electromagnetic in origin.

It used to be said in the older books that since Nature will obviously not present us with two particles—one neutral and the other charged, but otherwise the
same—we will never be able to tell how much of the mass is electromagnetic and how much is mechanical. But it turns out that Nature has been kind enough
to present us with just such objects, so that by comparing the observed mass of the charged one with the observed mass of the neutral one, we can tell whether
there is any electromagnetic mass. For example, there are the neutrons and protons. They interact with tremendous forces—the nuclear forces—whose origin
is unknown. However, as we have already described, the nuclear forces have one remarkable property. So far as they are concerned, the neutron and proton
are exactly the same. The nuclear forces between neutron and neutron, neutron and proton, and proton and proton are all identical as far as we can tell. Only
the little electromagnetic forces are different; electrically the proton and neutron are as different as night and day. This is just what we wanted. There are two
particles, identical from the point of view of the strong interactions, but different electrically. And they have a small difference in mass. The mass difference
between the proton and the neutron—expressed as the difference in the rest-energy   in units of MeV—is about  MeV, which is about  times the
electron mass. The classical theory would then predict a radius of about  to   the classical electron radius, or about  cm. Of course, one should really
use the quantum theory, but by some strange accident, all the constants— ’s and  ’s, etc.—come out so that the quantum theory gives roughly the same
radius as the classical theory. The only trouble is that the sign is wrong! The neutron is heavier than the proton.

Nature has also given us several other pairs—or triplets—of particles which appear to be exactly the same except for their electrical charge. They interact with
protons and neutrons, through the so-called “strong” interactions of the nuclear forces. In such interactions, the particles of a given kind—say the -mesons—
behave in every way like one object except for their electrical charge. In Table 28–1 we give a list of such particles, together with their measured masses. The
charged -mesons—positive or negative—have a mass of  MeV, but the neutral -meson is  MeV lighter. We believe that this mass difference is
electromagnetic; it would correspond to a particle radius of  to   cm. You will see from the table that the mass differences of the other particles are
usually of the same general size.

Table 28–1Particle Masses

Particle Charge
(electronic)

Mass
(MeV)

1

(MeV)

n (neutron)
p (proton)

 ( -meson)

K (K-meson)

 (sigma)

1  
.

Now the size of these particles can be determined by other methods, for instance by the diameters they appear to have in high-energy collisions. So the
electromagnetic mass seems to be in general agreement with electromagnetic theory, if we stop our integrals of the field energy at the same radius obtained by
these other methods. That’s why we believe that the differences do represent electromagnetic mass.

You are no doubt worried about the different signs of the mass differences in the table. It is easy to see why the charged ones should be heavier than the
neutral ones. But what about those pairs like the proton and the neutron, where the measured mass comes out the other way? Well, it turns out that these
particles are complicated, and the computation of the electromagnetic mass must be more elaborate for them. For instance, although the neutron has no net
charge, it does have a charge distribution inside it—it is only the net charge that is zero. In fact, we believe that the neutron looks—at least sometimes—like a
proton with a negative -meson in a “cloud” around it, as shown in Fig. 28–5. Although the neutron is “neutral,” because its total charge is zero, there are still
electromagnetic energies (for example, it has a magnetic moment), so it’s not easy to tell the sign of the electromagnetic mass difference without a detailed
theory of the internal structure.
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Fig. 28–5.A neutron may exist, at times, as a proton surrounded by a negative -meson.

We only wish to emphasize here the following points: (1) the electromagnetic theory predicts the existence of an electromagnetic mass, but it also falls on its
face in doing so, because it does not produce a consistent theory—and the same is true with the quantum modifications; (2) there is experimental evidence for
the existence of electromagnetic mass; and (3) all these masses are roughly the same as the mass of an electron. So we come back again to the original idea of
Lorentz—maybe all the mass of an electron is purely electromagnetic, maybe the whole  MeV is due to electrodynamics. Is it or isn’t it? We haven’t got
a theory, so we cannot say.

We must mention one more piece of information, which is the most annoying. There is another particle in the world called a muon which, so far as we can tell,
differs in no way whatsoever from an electron except for its mass. It acts in every way like an electron: it interacts with neutrinos and with the electromagnetic
field, and it has no nuclear forces. It does nothing different from what an electron does—at least, nothing which cannot be understood as merely a
consequence of its higher mass (  times the electron mass). Therefore, whenever someone finally gets the explanation of the mass of an electron, he will
then have the puzzle of where a muon gets its mass. Why? Because whatever the electron does, the muon does the same—so the mass ought to come out the
same. There are those who believe faithfully in the idea that the muon and the electron are the same particle and that, in the final theory of the mass, the
formula for the mass will be a quadratic equation with two roots—one for each particle. There are also those who propose it will be a transcendental equation
with an infinite number of roots, and who are engaged in guessing what the masses of the other particles in the series must be, and why these particles haven’t
been discovered yet.

28–6The nuclear force field

We would like to make some further remarks about the part of the mass of nuclear particles that is not electromagnetic. Where does this other large fraction
come from? There are other forces besides electrodynamics—like nuclear forces—that have their own field theories, although no one knows whether the
current theories are right. These theories also predict a field energy which gives the nuclear particles a mass term analogous to electromagnetic mass; we could
call it the “ -mesic-field-mass.” It is presumably very large, because the forces are great, and it is the possible origin of the mass of the heavy particles. But
the meson field theories are still in a most rudimentary state. Even with the well-developed theory of electromagnetism, we found it impossible to get beyond
first base in explaining the electron mass. With the theory of the mesons, we strike out.

We may take a moment to outline the theory of the mesons, because of its interesting connection with electrodynamics. In electrodynamics, the field can be
described in terms of a four-potential that satisfies the equation

Now we have seen that pieces of the field can be radiated away so that they exist separated from the sources. These are the photons of light, and they are
described by a differential equation without sources:

People have argued that the field of nuclear forces ought also to have its own “photons”—they would presumably be the -mesons—and that they should be
described by an analogous differential equation. (Because of the weakness of the human brain, we can’t think of something really new; so we argue by
analogy with what we know.) So the meson equation might be

where  could be a different four-vector or perhaps a scalar. It turns out that the pion has no polarization, so  should be a scalar. With the simple equation 
, the meson field would vary with distance from a source as , just as the electric field does. But we know that nuclear forces have much shorter

distances of action, so the simple equation won’t work. There is one way we can change things without disrupting the relativistic invariance: we can add or
subtract from the d’Alembertian a constant, times  . So Yukawa suggested that the free quanta of the nuclear force field might obey the equation

where  is a constant—that is, an invariant scalar. (Since   is a scalar differential operator in four dimensions, its invariance is unchanged if we add another
scalar to it.)

Let’s see what Eq. (28.17) gives for the nuclear force when things are not changing with time. We want a spherically symmetric solution of

around some point source at, say, the origin. If  depends only on  , we know that

So we have the equation
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rubber bands—something that keeps the charges from flying off. It was first pointed out by Poincaré that the rubber bands—or whatever it is that holds the
electron together—must be included in the energy and momentum calculations. For this reason the extra nonelectrical forces are also known by the more
elegant name “the Poincaré stresses.” If the extra forces are included in the calculations, the masses obtained in two ways are changed (in a way that depends
on the detailed assumptions). And the results are consistent with relativity; i.e., the mass that comes out from the momentum calculation is the same as the one
that comes from the energy calculation. However, both of them contain two contributions: an electromagnetic mass and contribution from the Poincaré
stresses. Only when the two are added together do we get a consistent theory.

It is therefore impossible to get all the mass to be electromagnetic in the way we hoped. It is not a legal theory if we have nothing but electrodynamics.
Something else has to be added. Whatever you call them—“rubber bands,” or “Poincaré stresses,” or something else—there have to be other forces in nature
to make a consistent theory of this kind.

Clearly, as soon as we have to put forces on the inside of the electron, the beauty of the whole idea begins to disappear. Things get very complicated. You
would want to ask: How strong are the stresses? How does the electron shake? Does it oscillate? What are all its internal properties? And so on. It might be
possible that an electron does have some complicated internal properties. If we made a theory of the electron along these lines, it would predict odd properties,
like modes of oscillation, which haven’t apparently been observed. We say “apparently” because we observe a lot of things in nature that still do not make
sense. We may someday find out that one of the things we don’t understand today (for example, the muon) can, in fact, be explained as an oscillation of the
Poincaré stresses. It doesn’t seem likely, but no one can say for sure. There are so many things about fundamental particles that we still don’t understand.
Anyway, the complex structure implied by this theory is undesirable, and the attempt to explain all mass in terms of electromagnetism—at least in the way we
have described—has led to a blind alley.

We would like to think a little more about why we say we have a mass when the momentum in the field is proportional to the velocity. Easy! The mass is the
coefficient between momentum and velocity. But we can look at the mass in another way: a particle has mass if you have to exert a force in order to accelerate
it. So it may help our understanding if we look a little more closely at where the forces come from. How do we know that there has to be a force? Because we
have proved the law of the conservation of momentum for the fields. If we have a charged particle and push on it for awhile, there will be some momentum in
the electromagnetic field. Momentum must have been poured into the field somehow. Therefore there must have been a force pushing on the electron in order
to get it going—a force in addition to that required by its mechanical inertia, a force due to its electromagnetic interaction. And there must be a corresponding
force back on the “pusher.” But where does that force come from?

Fig. 28–3.The self-force on an accelerating electron is not zero because of the retardation. (By  we mean the force on a surface element  ; by  we
mean the force on the surface element   from the charge on the surface element  .

The picture is something like this. We can think of the electron as a charged sphere. When it is at rest, each piece of charge repels electrically each other piece,
but the forces all balance in pairs, so that there is no net force. [See Fig. 28–3(a).] However, when the electron is being accelerated, the forces will no longer
be in balance because of the fact that the electromagnetic influences take time to go from one piece to another. For instance, the force on the piece   in
Fig. 28–3(b) from a piece   on the opposite side depends on the position of   at an earlier time, as shown. Both the magnitude and direction of the force
depend on the motion of the charge. If the charge is accelerating, the forces on various parts of the electron might be as shown in Fig. 28–3(c). When all these
forces are added up, they don’t cancel out. They would cancel for a uniform velocity, even though it looks at first glance as though the retardation would give
an unbalanced force even for a uniform velocity. But it turns out that there is no net force unless the electron is being accelerated. With acceleration, if we
look at the forces between the various parts of the electron, action and reaction are not exactly equal, and the electron exerts a force on itself that tries to hold
back the acceleration. It holds itself back by its own bootstraps.

It is possible, but difficult, to calculate this self-reaction force; however, we don’t want to go into such an elaborate calculation here. We will tell you what the
result is for the special case of relatively uncomplicated motion in one dimension, say . Then, the self-force can be written in a series. The first term in the
series depends on the acceleration  , the next term is proportional to  , and so on.1 The result is

where  and   are numerical coefficients of the order of  . The coefficient   of the  term depends on what charge distribution is assumed; if the charge is
distributed uniformly on a sphere, then . So there is a term, proportional to the acceleration, which varies inversely as the radius   of the electron and
agrees exactly with the value we got in Eq. (28.4) for  . If the charge distribution is chosen to be different, so that  is changed, the fraction   in
Eq. (28.4) would be changed in the same way. The term in   is independent of the assumed radius  , and also of the assumed distribution of the charge; its
coefficient is always  . The next term is proportional to the radius  , and its coefficient   depends on the charge distribution. You will notice that if we let
the electron radius   go to zero, the last term (and all higher terms) will go to zero; the second term remains constant, but the first term—the electromagnetic
mass—goes to infinity. And we can see that the infinity arises because of the force of one part of the electron on another—because we have allowed what is
perhaps a silly thing, the possibility of the “point” electron acting on itself.

28–5Attempts to modify the Maxwell theory

We would like now to discuss how it might be possible to modify Maxwell’s theory of electrodynamics so that the idea of an electron as a simple point charge
could be maintained. Many attempts have been made, and some of the theories were even able to arrange things so that all the electron mass was



F. Bopp. Eine lineare Tieeorie des Elektrons 34 5 

Edae 26neare Theorde des EZektrons*) 

Vim P r d t x B o p p  

Inhal t :  § 1. Feldgleichungen, Energie-Impuls-Tensor. - 5 2. Punkt- 
ladung und Bewegungsgleichungen. - 5 3. strahlungakraft. - 5 4. Ent- 
wicklung der Hamiltonfunktion. 

Das Ziel der folgenden Untersuchnngen ist heuptskhlich ein 
klassisches. In  dem von Mie I) gegebenen Rahmen einer allgemeinen 
Elektrodynamik wird eine lineare Theorie pnnktformiger Elektronen 
mit endlicher Feldenergie entwickelt. Der unten folgende Ansatz, 
der nrspriinglich als ein ubungsbeispiel zur Mieschen Theorie ge- 
dacht war, hat durch die Arbeiten von Born, In fe ld  u. aa) bei der 
Herausstellung des Unterschieds zwischen den Mieschen und msern 
Bewegungsgleichungen wertvolle Forderung erfahren. Umgekehrt 
hofft der Verf., da6 die Voraussetzungen, die der Ableitnng der Be- 
wegungsgleichungen in der Bornschen Theorie zugrunde liegen, in- 
folge der durch die Linearitat bedingten Einfachheit besonders 
dentlich in Erscheinnng treten. Die vollstandige Formulierung der 
Bewegnngsgleichungen unter EinschluB der Strahlungskriifte, die bei 
Born noch fehlen, ist im AnschluS an eine Arbeit von Diraca) iiber 
die Strahlungskrafte in der Maxwellschen Theorie gelungen. Es ist 
bemerkenswert, daJ3 damit beziiglich des Aufbans des Elektrons das 
urspriingliche Ziel des sogenannten elektrodynamischen Weltbilds 3, das 
vie1 spezieller als das Miesche ist, im Rahmen der verallgemeinerten 
Feldgleichungen vollstandig verwirklicht wird. 

Den AnstoS zur Ausarbeitung und Veroffentlichung der folgenden 
Rechnungen haben die Y ukaw aschen Arbeiten zur Theorie der Kern- 
krafte gegeben. Insbesondere zeigen Teile unserer Feldgleichungen 
eine bemerkenswerte Verwandtschaft zn den Proca-Yuka  wa schen 
Gleichnngen 7, die die Vermntung nahelegt, daJ3 die Yukawakrffte 
nicbt nur fiir das Znsammenhalten der Kerne sondern auch fur die 
Kohision des Elektrons verantwortlich sind. Diese Verwandtschaft 
ist formal durch die ahnliche Struktur der Maxw ellschen Gleichungen 
einerseits und der Y ukaw aschen Gleichungen andererseits bestimmt, 

*) Breslauer Habilitationsschrift ; vorgetragen auf der Gautagung der 
D. physik. Ges. im Juni 1940 in Leipzig. 

JULY 1 AND 15, 1942 PHYSICAL REV IEW VOL U M E 62

A Generalized Electrodynamics

Part I—Non-Quantum
BORIS PODOLSKY

Department of Physics, University of Cincinnati, Cincinnati, Ohio

(Received March 23, 1942)

If one wishes to derive generalized field equations from a Lagrangian, at the same time
preserving the linear character of the equations, one must admit terms involving derivatives
of the field quantities. It turns out that the only non-trivial generalization of this kind,
leading to differential equations of order below eighth, is obtained by taking Ly = (1/8+) J ~z F p'
+a'(8F p/axe)'). This leads to a theory that contains the Lande-Thomas theory and accounts
for the choice of sign required when one wishes to consider the total field as consisting of
the Maxwell-Lorentz and the Yukawa fiel'ds.

Ig = I I.gd V= E'—d V. —(2.1)

1. INTRODUCTION
" 'F one assumes that the equations of electrody-
~ ~ namics are derivable from some Lagrangian
L, and wishes to preserve the linear character of
the field equations (The Principle of Superposi-
tion) in order to make the quantization easy,
then, unless one is prepared to introduce new
kinds of field quantities, the only way of gener-
alizing the Maxwell-Lorentz theory appears to be
by permitting the Lagrangian of the field to con-
tain terms involving derivatives of the field
quantities E and H.
One then obtains, as the field equations, partial

di8'erential equations of an order higher than the
usual second. Far from being objectionable, this
appears to be what is needed. For, the various
proposed methods of "cutting oH" e6ects of
higher frequencies seems to indicate clearly that
the higher derivatives, which become important
for higher frequencies, are not properly taken care
of by the usual second-order equations. Further,
the extra freedom of choice of a solution to be
used in any particular problem, provided by
equations of higher order, permits of an imposi-
tion of finiteness conditions, analogous to
Schroedinger's procedure, which serves also to
remove infinities inherent in the usual treatment
of point charges.

2. NON-RELATIVISTIC CASE

The usual Lagrangian of the field in this case,
in electrostatic units, is:

(1—a'7') Ps =—4irp (2.4)

To preserve the linearity of the fieM equations
the additional terms have to be quadratic in E
and its derivatives. If we limit ourselves to field
equations of an order not higher than sixth, the
highest derivative of E that may occur is second.
Investigating all possible combinations of the
operator V' and E satisfying these requirements,
one finds that all such combinations either vanish
identically, by virtue of the condition E=—V'q
(the result of preserving unchanged the term in
the total Lagrangian representing the interaction
of the field and particles), or diRer by a diver-
gence from (V E)'. Since addition of a divergence
to Jy does not alter the field equations, we may
take, as the only generalization giving anything
new, Iy= (1/8 )itrE+ (aV E)'].
The constant u thus introduced has the dimen-
sion of length, but otherwise remains arbitrary,
as does also the sign of the whole additional terni.
The field equations are now:
(1&a'P)V E=4irp and V'XE=0. (2.3)

Although both choices of the sign admit of solu-
tions without infinities, I am inclined to the
belief, based on the study of the types of waves
occurring in the corresponding relativistic gener-
alization, that eventually only the upper sign
will turn out to give physically significant results.
The following investigation is therefore based on
the tentative assumption that the upper sign is to
be used in Eqs. (2.2) and (2.3).
The generalized Poisson equation is now:
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A Generalized Electrodynamics

Part II—Quantum
BORIS PODOLSKY AND CHIHIRO KIKUCHI*

Department of Physics, University of Cincinnati, Cincinnati, Ohio
(Received January 20, 1944)

When the Lagrangian from which the field equations are derived contains second and
higher derivatives of the generalized field coordinates, the method of quantizing the field
equations developed by Heisenberg and Pauli cannot be immediately applied. By generalizing
a method due to Ostrogradsky for converting Lagrange's equations of motion of a particle,
when higher derivatives are present, into canonical Hamiltonian form, it becomes possible to
perform a similar transformation of the field equations. Applying this method to Podolsky's
generalized electrodynamics, we obtain the Hamiltonian of the field and double the usual
number of generalized coordinates and momenta. The quantization of the field follows without
any special assumptions. The last two sections are devoted to the discussion of the auxiliary
conditions and some of their consequences.

I. PRELIMINARIES. EXTENSION. OF H:RISEN~ERG leads to the field equation
AND PAULI'S' METHOD

HE basis of generalizing the Heisenberg and
Pauli method of quantizing fields to the

case when the Lagrangian of the field contains
second derivatives of the potentials is contained
in a suggestion due to Ostrogradsky. ' He showed
how the Lagrange equations of motion of a
particle, when higher derivatives are present,
can be transformed into the Hamiltonian form.
Suppose the Lagrangian L is a function of the

potentials y =(A, iy) as well as their first and
second derivatives

L =L(y~i yap~ y~, pv) i,
where p are functions of the space-time coordi-
nates x = (x~, x2, x3, x4=ixo=fact), and

ya, p = By~/Bxp, ya, py = B y~/BxpBxp

The variational equation

BW= B I
~
Ld Vdt = 0, d V=dxidx2dx3,

BL 8 BL O' BL+
BP~ BXp Rgb, p BXpBXy B(Ptt, pp

=0, (1.2)

q =y, and Q =By /Bt= q, —(1.3)
and define the rnomenta conjugate to q„and
Q- bv

f - = (BL/Bi-) B/Bt(BL/B0-)—

and
—B/Bx; (BL/Bj,;) (1.4)

P =BL/Bj,
respectively. The Hamiltonian is then conve-
niently defined by

provided p and p, „are specified and are un-
varied over the boundaries of the four-dimen-
sional manifold 0 over which the integration is
performed.
We introduce as the new generalized coordi-

nates

OI
JI= I.+P r/, +I' Q . — (1.6)

zcBW=B~ILdn =0, dn=d Vdx4, (1.1) The time derivatives of the coordinates, j and
Q, can in general be eliminated from the

*No H fo.d con, H .fo.d, p, , i, . Hamilto»an bp using Eqs. (1.3) and (1.5). The
'W. Heisenberg and W. Pauli, Zeits. f. Physik 56, 1 result is

(1929).' See E. T. Whittaker, Analytical Dynamics (1927), H=~(a- P- a-, * a-, *;, Q- &-, Q«, ') (17)ap er
'Greek indices will range from 1 to 4, while Latin sub-

scripts from 1 to 3. Repeated indices are summed. Taking the differentials of Eqs. (1.6) and (1.7)
228

Annalen der Physik. 5. Folge. Band 38. 1940 
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that the BP model solution for a point charge in electrody-
namics corresponds to an ordinary electrodynamic solution
for a specific charge distribution. This motivates us in Sect. 3
to elucidate the BP model as a natural way of providing
Pauli–Villars regularization in ordinary QED. We discuss in
Sect. 3 the covariant Lorenz gauge fixing obtaining the cor-
responding photon propagator and point out the necessity of
the natural gauge-fixing term in the gauge fixing action. This
term permits a natural factorization of the generalized photon
propagator in all gauges analyzed in Sect. 3. The BP model
parameter dependent part of the propagator appears only as
a global multiplicative factor turning its mathematical struc-
ture easier to analyze and interpret as a way of introducing
Pauli–Villars regularization. In Sect. 4, we provide an exam-
ple of the BP model application discussing the second-order
correction to the electron self-energy and show explicitly
the consistency with the Pauli–Villars regularized result. We
close in Sect. 5 with some final comments and concluding
remarks. In Appendix A, we summarize the derivation of
Eq. (31) used in Sect. 2.

2 Bopp–Podolsky’s generalized electrostatics

The starting classical action in Bopp-Podolsky (BP)’s gener-
alized electrodynamics containing second order space-time
derivatives of the gauge field Aµ(x) in Minkowski space is
given by1

S0[Aµ] =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

}
(1)

where a is a real number with physical dimension of length
or inverse mass, known as Bopp–Podolsky’s parameter
[4,5]. We use Minkowski’s coordinates with metric signa-
ture diag(ηµν)= (+1,−1,−1,−1) and the integration mea-
sure d4x in Eq. (1) runs throughout all space-time coordi-
nates xµ. It is clear that BP’s classical action S0 is a natural
higher derivatives Lorentz covariant generalization of ordi-
nary Maxwell’s electromagnetism – the latter being recov-
ered for a = 0. Although with a different notation, we
adopt the same original Bopp–Podolsky’s [4,5,12,13] choice
for the second term in Eq. (1). This choice is important if
one wishes to interpret the extra degrees of freedom of BP
model as physical massive excitations. Although the case

1 While Podolsky introduced the Lagrangian density corresponding to
the action given in Eq. (1) in Ref. [5], Bopp actually worked with a
slightly different version in Ref. [4], namely

LB = −1
4

[
FµνFµν − a2∂ρFµν∂ρFµν

]
.

However, it can be checked that these two versions due to Bopp and
Podolsky are in fact equivalent to each other and lead to the same field
equations of motion.

of negative sign for the second term in S0 above was con-
sidered in [14,18,19] describing tachionic mass excitations
for the gauge field, we are not going to discuss it here but
rather maintain the implementation consistent with the usual
causality.

Note that in Eq. (1), the short-hand Fµν ≡ ∂µAν − ∂ν Aµ

stands for the ordinary electromagnetic field strength ten-
sor which is naturally invariant under the gauge group U (1).
That means the BP extra a-dependent term does not spoil
the original gauge invariance of the action S0 and, particu-
larly, the propagator of the gauge field is not well defined
before gauge fixing. We shall address the gauge fixing issue
in Sect. 3 where the Lorenz and axial type gauge fixings
will be discussed. In the following we briefly review a few
immediate properties and consequences of action given by
Eq. (1) and consider the static case obtaining the BP version
of Poisson’s equation as well as its general solution. For a
point charge delta distribution, the BP model leads to a every-
where finite potential – we shall show that it is possible to
generate this very same potential within the scope of ordinary
electrodynamics using a suitable charge distribution.

2.1 Field equations of motion and general static solution

In order to understand the physical content encoded in Eq. (1)
we couple the gauge field to an external source jµ(x) through

Sext = −
∫

d4x jµAµ (2)

and demand stationarity of the total action under functional
variations of the gauge field Aµ. As a result, the correspond-
ing Euler-Lagrange equations of motion obtained from the
minimal action principle read

(1 + a2!)∂µFµν = jν , (3)

and can be understood in the present context as Maxwell’s
generalized equations. As the indices µ, ν run from 0 to 3,
Eq. (3) represents a set of four fourth-order partial differential
equations on the gauge field Aµ. Conservation of the external
current jµ comes straightforwardly from the antisymmetry
of the field strength

∂ν jν = (1 + a2!)∂ν∂µFµν ≡ 0 . (4)

In terms of the measurable usual electric and magnetic fields
respectively given by

Ei = −F0i , (5)

and

Bi = −1
2
ϵi jk F jk , (6)

123

Eur. Phys. J. C           (2019) 79:871 Page 3 of 13   871 

that the BP model solution for a point charge in electrody-
namics corresponds to an ordinary electrodynamic solution
for a specific charge distribution. This motivates us in Sect. 3
to elucidate the BP model as a natural way of providing
Pauli–Villars regularization in ordinary QED. We discuss in
Sect. 3 the covariant Lorenz gauge fixing obtaining the cor-
responding photon propagator and point out the necessity of
the natural gauge-fixing term in the gauge fixing action. This
term permits a natural factorization of the generalized photon
propagator in all gauges analyzed in Sect. 3. The BP model
parameter dependent part of the propagator appears only as
a global multiplicative factor turning its mathematical struc-
ture easier to analyze and interpret as a way of introducing
Pauli–Villars regularization. In Sect. 4, we provide an exam-
ple of the BP model application discussing the second-order
correction to the electron self-energy and show explicitly
the consistency with the Pauli–Villars regularized result. We
close in Sect. 5 with some final comments and concluding
remarks. In Appendix A, we summarize the derivation of
Eq. (31) used in Sect. 2.

2 Bopp–Podolsky’s generalized electrostatics

The starting classical action in Bopp-Podolsky (BP)’s gener-
alized electrodynamics containing second order space-time
derivatives of the gauge field Aµ(x) in Minkowski space is
given by1

S0[Aµ] =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

}
(1)

where a is a real number with physical dimension of length
or inverse mass, known as Bopp–Podolsky’s parameter
[4,5]. We use Minkowski’s coordinates with metric signa-
ture diag(ηµν)= (+1,−1,−1,−1) and the integration mea-
sure d4x in Eq. (1) runs throughout all space-time coordi-
nates xµ. It is clear that BP’s classical action S0 is a natural
higher derivatives Lorentz covariant generalization of ordi-
nary Maxwell’s electromagnetism – the latter being recov-
ered for a = 0. Although with a different notation, we
adopt the same original Bopp–Podolsky’s [4,5,12,13] choice
for the second term in Eq. (1). This choice is important if
one wishes to interpret the extra degrees of freedom of BP
model as physical massive excitations. Although the case

1 While Podolsky introduced the Lagrangian density corresponding to
the action given in Eq. (1) in Ref. [5], Bopp actually worked with a
slightly different version in Ref. [4], namely

LB = −1
4

[
FµνFµν − a2∂ρFµν∂ρFµν

]
.

However, it can be checked that these two versions due to Bopp and
Podolsky are in fact equivalent to each other and lead to the same field
equations of motion.

of negative sign for the second term in S0 above was con-
sidered in [14,18,19] describing tachionic mass excitations
for the gauge field, we are not going to discuss it here but
rather maintain the implementation consistent with the usual
causality.

Note that in Eq. (1), the short-hand Fµν ≡ ∂µAν − ∂ν Aµ

stands for the ordinary electromagnetic field strength ten-
sor which is naturally invariant under the gauge group U (1).
That means the BP extra a-dependent term does not spoil
the original gauge invariance of the action S0 and, particu-
larly, the propagator of the gauge field is not well defined
before gauge fixing. We shall address the gauge fixing issue
in Sect. 3 where the Lorenz and axial type gauge fixings
will be discussed. In the following we briefly review a few
immediate properties and consequences of action given by
Eq. (1) and consider the static case obtaining the BP version
of Poisson’s equation as well as its general solution. For a
point charge delta distribution, the BP model leads to a every-
where finite potential – we shall show that it is possible to
generate this very same potential within the scope of ordinary
electrodynamics using a suitable charge distribution.

2.1 Field equations of motion and general static solution

In order to understand the physical content encoded in Eq. (1)
we couple the gauge field to an external source jµ(x) through

Sext = −
∫

d4x jµAµ (2)

and demand stationarity of the total action under functional
variations of the gauge field Aµ. As a result, the correspond-
ing Euler-Lagrange equations of motion obtained from the
minimal action principle read

(1 + a2!)∂µFµν = jν , (3)

and can be understood in the present context as Maxwell’s
generalized equations. As the indices µ, ν run from 0 to 3,
Eq. (3) represents a set of four fourth-order partial differential
equations on the gauge field Aµ. Conservation of the external
current jµ comes straightforwardly from the antisymmetry
of the field strength

∂ν jν = (1 + a2!)∂ν∂µFµν ≡ 0 . (4)

In terms of the measurable usual electric and magnetic fields
respectively given by

Ei = −F0i , (5)

and

Bi = −1
2
ϵi jk F jk , (6)

123

Eur. Phys. J. C           (2019) 79:871 Page 3 of 13   871 

that the BP model solution for a point charge in electrody-
namics corresponds to an ordinary electrodynamic solution
for a specific charge distribution. This motivates us in Sect. 3
to elucidate the BP model as a natural way of providing
Pauli–Villars regularization in ordinary QED. We discuss in
Sect. 3 the covariant Lorenz gauge fixing obtaining the cor-
responding photon propagator and point out the necessity of
the natural gauge-fixing term in the gauge fixing action. This
term permits a natural factorization of the generalized photon
propagator in all gauges analyzed in Sect. 3. The BP model
parameter dependent part of the propagator appears only as
a global multiplicative factor turning its mathematical struc-
ture easier to analyze and interpret as a way of introducing
Pauli–Villars regularization. In Sect. 4, we provide an exam-
ple of the BP model application discussing the second-order
correction to the electron self-energy and show explicitly
the consistency with the Pauli–Villars regularized result. We
close in Sect. 5 with some final comments and concluding
remarks. In Appendix A, we summarize the derivation of
Eq. (31) used in Sect. 2.

2 Bopp–Podolsky’s generalized electrostatics

The starting classical action in Bopp-Podolsky (BP)’s gener-
alized electrodynamics containing second order space-time
derivatives of the gauge field Aµ(x) in Minkowski space is
given by1
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where a is a real number with physical dimension of length
or inverse mass, known as Bopp–Podolsky’s parameter
[4,5]. We use Minkowski’s coordinates with metric signa-
ture diag(ηµν)= (+1,−1,−1,−1) and the integration mea-
sure d4x in Eq. (1) runs throughout all space-time coordi-
nates xµ. It is clear that BP’s classical action S0 is a natural
higher derivatives Lorentz covariant generalization of ordi-
nary Maxwell’s electromagnetism – the latter being recov-
ered for a = 0. Although with a different notation, we
adopt the same original Bopp–Podolsky’s [4,5,12,13] choice
for the second term in Eq. (1). This choice is important if
one wishes to interpret the extra degrees of freedom of BP
model as physical massive excitations. Although the case

1 While Podolsky introduced the Lagrangian density corresponding to
the action given in Eq. (1) in Ref. [5], Bopp actually worked with a
slightly different version in Ref. [4], namely

LB = −1
4

[
FµνFµν − a2∂ρFµν∂ρFµν

]
.

However, it can be checked that these two versions due to Bopp and
Podolsky are in fact equivalent to each other and lead to the same field
equations of motion.

of negative sign for the second term in S0 above was con-
sidered in [14,18,19] describing tachionic mass excitations
for the gauge field, we are not going to discuss it here but
rather maintain the implementation consistent with the usual
causality.

Note that in Eq. (1), the short-hand Fµν ≡ ∂µAν − ∂ν Aµ

stands for the ordinary electromagnetic field strength ten-
sor which is naturally invariant under the gauge group U (1).
That means the BP extra a-dependent term does not spoil
the original gauge invariance of the action S0 and, particu-
larly, the propagator of the gauge field is not well defined
before gauge fixing. We shall address the gauge fixing issue
in Sect. 3 where the Lorenz and axial type gauge fixings
will be discussed. In the following we briefly review a few
immediate properties and consequences of action given by
Eq. (1) and consider the static case obtaining the BP version
of Poisson’s equation as well as its general solution. For a
point charge delta distribution, the BP model leads to a every-
where finite potential – we shall show that it is possible to
generate this very same potential within the scope of ordinary
electrodynamics using a suitable charge distribution.

2.1 Field equations of motion and general static solution

In order to understand the physical content encoded in Eq. (1)
we couple the gauge field to an external source jµ(x) through

Sext = −
∫

d4x jµAµ (2)

and demand stationarity of the total action under functional
variations of the gauge field Aµ. As a result, the correspond-
ing Euler-Lagrange equations of motion obtained from the
minimal action principle read

(1 + a2!)∂µFµν = jν , (3)

and can be understood in the present context as Maxwell’s
generalized equations. As the indices µ, ν run from 0 to 3,
Eq. (3) represents a set of four fourth-order partial differential
equations on the gauge field Aµ. Conservation of the external
current jµ comes straightforwardly from the antisymmetry
of the field strength

∂ν jν = (1 + a2!)∂ν∂µFµν ≡ 0 . (4)

In terms of the measurable usual electric and magnetic fields
respectively given by

Ei = −F0i , (5)

and
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2
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the action given by Eq. (1) can also be expressed as

S0 = 1
2

∫
d4x

[
E2 − B2 + a2(∇ · E)2 − a2(Ė − ∇ × B)2

]
, (7)

while Eq. (3) gives rise to the four non-homogeneous
Maxwell equations, namely, one for the temporal component

(1 + a2!)∇ · E = j0 , (8)

and three for the space components

(1 + a2!)(∇ × B − ∂E
∂t

) = j . (9)

The homogeneous Maxwell equations, on the other hand,
remain the same as they amount to the very identities which
permit to describe the physical E and B fields, through
Eqs. (5) and (6) above, in terms of the gauge potential field
Aµ. In particular the absence of magnetic monopoles still
holds in BP’s generalization as the magnetic field B remains
divergenceless.

Let’s now focus on the static case where it is possible to
obtain the general solution and discuss the physical meaning
of the BP model. For a time-independent electromagnetic
field, Eqs. (8) and (9) reduce respectively to

(1 − a2∇2)∇ · E = j0 (10)

and

(1 − a2∇2)∇ × B = j (11)

containing now only space derivatives, while the homoge-
neous ones simply state that B is divergenceless and E irrota-
tional. In this case, inserting (5) disregarding time derivatives
into Eq. (10) leads to a generalized Poisson equation

(1 − a2∇2)∇2φ = −4πρ , (12)

where φ ≡ A0 represents the electrostatic potential and we
have written j0 = 4πρ for the electric charge density. By
defining the a-dependent fourth-order differential operator
Pa as

Pa ≡ (1 − a2∇2)∇2 (13)

we may rewrite Eq. (12) more compactly as

Paφ = −4πρ . (14)

Henceforth, we shall refer Eq. (14) as the Poisson–Bopp–
Podoslky (PBP) equation.

To solve the PBP equation given by Eq. (14), equivalently
Eq. (12), for an arbitrary given charge distribution ρ, let us
first consider the case of an elementary distribution resulting
from a fixed unity point charge localized at r0

ρr0(r) = δ(3)(r − r0) . (15)

For this case the solution φP,a(r) can be written as the dif-
ference between the usual Coulomb potential

φC (r) ≡ 1
r

(16)

and the Yukawa potential

φY,a(r) ≡ e−r/a

r
(17)

evaluated at r = |r − r0|. In fact, the BP potential centered
at r0, defined as

φP,a(|r − r0|) ≡ φC (|r − r0|) − φY,a(|r − r0|)

= 1 − e−|r−r0|/a

|r − r0|
, (18)

satisfies Eq. (14) for the elementary Dirac delta charge dis-
tribution given by Eq. (15). This can be directly seen by
applying the Pa operator to each potential leading to

PaφC (r) = −4π
[
δ(3)(r) − a2∇2δ(3)(r)

]
(19)

and

PaφY,a(r) = 4πa2∇2δ(3)(r) , (20)

and then subtracting Eq. (20) from Eq. (19).
Applying the Green’s function method, we then find that

the general solution φ(r) of the PBP equation given by
Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
elementary contributions (18) weighed by the given charge
density ρ(r), that is

φ(r) =
∫

ρ(r′)

(
1 − e−|r−r′|/a

)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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remain the same as they amount to the very identities which
permit to describe the physical E and B fields, through
Eqs. (5) and (6) above, in terms of the gauge potential field
Aµ. In particular the absence of magnetic monopoles still
holds in BP’s generalization as the magnetic field B remains
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Let’s now focus on the static case where it is possible to
obtain the general solution and discuss the physical meaning
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field, Eqs. (8) and (9) reduce respectively to
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and
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neous ones simply state that B is divergenceless and E irrota-
tional. In this case, inserting (5) disregarding time derivatives
into Eq. (10) leads to a generalized Poisson equation
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have written j0 = 4πρ for the electric charge density. By
defining the a-dependent fourth-order differential operator
Pa as

Pa ≡ (1 − a2∇2)∇2 (13)

we may rewrite Eq. (12) more compactly as

Paφ = −4πρ . (14)

Henceforth, we shall refer Eq. (14) as the Poisson–Bopp–
Podoslky (PBP) equation.

To solve the PBP equation given by Eq. (14), equivalently
Eq. (12), for an arbitrary given charge distribution ρ, let us
first consider the case of an elementary distribution resulting
from a fixed unity point charge localized at r0

ρr0(r) = δ(3)(r − r0) . (15)

For this case the solution φP,a(r) can be written as the dif-
ference between the usual Coulomb potential
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density ρ(r), that is
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where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value
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and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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]
, (7)

while Eq. (3) gives rise to the four non-homogeneous
Maxwell equations, namely, one for the temporal component

(1 + a2!)∇ · E = j0 , (8)

and three for the space components

(1 + a2!)(∇ × B − ∂E
∂t

) = j . (9)

The homogeneous Maxwell equations, on the other hand,
remain the same as they amount to the very identities which
permit to describe the physical E and B fields, through
Eqs. (5) and (6) above, in terms of the gauge potential field
Aµ. In particular the absence of magnetic monopoles still
holds in BP’s generalization as the magnetic field B remains
divergenceless.

Let’s now focus on the static case where it is possible to
obtain the general solution and discuss the physical meaning
of the BP model. For a time-independent electromagnetic
field, Eqs. (8) and (9) reduce respectively to

(1 − a2∇2)∇ · E = j0 (10)

and

(1 − a2∇2)∇ × B = j (11)

containing now only space derivatives, while the homoge-
neous ones simply state that B is divergenceless and E irrota-
tional. In this case, inserting (5) disregarding time derivatives
into Eq. (10) leads to a generalized Poisson equation

(1 − a2∇2)∇2φ = −4πρ , (12)

where φ ≡ A0 represents the electrostatic potential and we
have written j0 = 4πρ for the electric charge density. By
defining the a-dependent fourth-order differential operator
Pa as

Pa ≡ (1 − a2∇2)∇2 (13)

we may rewrite Eq. (12) more compactly as

Paφ = −4πρ . (14)

Henceforth, we shall refer Eq. (14) as the Poisson–Bopp–
Podoslky (PBP) equation.

To solve the PBP equation given by Eq. (14), equivalently
Eq. (12), for an arbitrary given charge distribution ρ, let us
first consider the case of an elementary distribution resulting
from a fixed unity point charge localized at r0

ρr0(r) = δ(3)(r − r0) . (15)

For this case the solution φP,a(r) can be written as the dif-
ference between the usual Coulomb potential

φC (r) ≡ 1
r

(16)

and the Yukawa potential

φY,a(r) ≡ e−r/a

r
(17)

evaluated at r = |r − r0|. In fact, the BP potential centered
at r0, defined as

φP,a(|r − r0|) ≡ φC (|r − r0|) − φY,a(|r − r0|)

= 1 − e−|r−r0|/a

|r − r0|
, (18)

satisfies Eq. (14) for the elementary Dirac delta charge dis-
tribution given by Eq. (15). This can be directly seen by
applying the Pa operator to each potential leading to

PaφC (r) = −4π
[
δ(3)(r) − a2∇2δ(3)(r)

]
(19)

and

PaφY,a(r) = 4πa2∇2δ(3)(r) , (20)

and then subtracting Eq. (20) from Eq. (19).
Applying the Green’s function method, we then find that

the general solution φ(r) of the PBP equation given by
Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
elementary contributions (18) weighed by the given charge
density ρ(r), that is

φ(r) =
∫

ρ(r′)

(
1 − e−|r−r′|/a

)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value

123

  871 Page 4 of 13 Eur. Phys. J. C           (2019) 79:871 

the action given by Eq. (1) can also be expressed as

S0 = 1
2

∫
d4x

[
E2 − B2 + a2(∇ · E)2 − a2(Ė − ∇ × B)2
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elementary contributions (18) weighed by the given charge
density ρ(r), that is

φ(r) =
∫

ρ(r′)

(
1 − e−|r−r′|/a

)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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the action given by Eq. (1) can also be expressed as

S0 = 1
2

∫
d4x

[
E2 − B2 + a2(∇ · E)2 − a2(Ė − ∇ × B)2

]
, (7)

while Eq. (3) gives rise to the four non-homogeneous
Maxwell equations, namely, one for the temporal component

(1 + a2!)∇ · E = j0 , (8)

and three for the space components

(1 + a2!)(∇ × B − ∂E
∂t

) = j . (9)

The homogeneous Maxwell equations, on the other hand,
remain the same as they amount to the very identities which
permit to describe the physical E and B fields, through
Eqs. (5) and (6) above, in terms of the gauge potential field
Aµ. In particular the absence of magnetic monopoles still
holds in BP’s generalization as the magnetic field B remains
divergenceless.

Let’s now focus on the static case where it is possible to
obtain the general solution and discuss the physical meaning
of the BP model. For a time-independent electromagnetic
field, Eqs. (8) and (9) reduce respectively to

(1 − a2∇2)∇ · E = j0 (10)

and

(1 − a2∇2)∇ × B = j (11)

containing now only space derivatives, while the homoge-
neous ones simply state that B is divergenceless and E irrota-
tional. In this case, inserting (5) disregarding time derivatives
into Eq. (10) leads to a generalized Poisson equation

(1 − a2∇2)∇2φ = −4πρ , (12)

where φ ≡ A0 represents the electrostatic potential and we
have written j0 = 4πρ for the electric charge density. By
defining the a-dependent fourth-order differential operator
Pa as

Pa ≡ (1 − a2∇2)∇2 (13)

we may rewrite Eq. (12) more compactly as

Paφ = −4πρ . (14)

Henceforth, we shall refer Eq. (14) as the Poisson–Bopp–
Podoslky (PBP) equation.

To solve the PBP equation given by Eq. (14), equivalently
Eq. (12), for an arbitrary given charge distribution ρ, let us
first consider the case of an elementary distribution resulting
from a fixed unity point charge localized at r0

ρr0(r) = δ(3)(r − r0) . (15)

For this case the solution φP,a(r) can be written as the dif-
ference between the usual Coulomb potential

φC (r) ≡ 1
r

(16)

and the Yukawa potential

φY,a(r) ≡ e−r/a

r
(17)

evaluated at r = |r − r0|. In fact, the BP potential centered
at r0, defined as

φP,a(|r − r0|) ≡ φC (|r − r0|) − φY,a(|r − r0|)

= 1 − e−|r−r0|/a

|r − r0|
, (18)

satisfies Eq. (14) for the elementary Dirac delta charge dis-
tribution given by Eq. (15). This can be directly seen by
applying the Pa operator to each potential leading to

PaφC (r) = −4π
[
δ(3)(r) − a2∇2δ(3)(r)

]
(19)

and

PaφY,a(r) = 4πa2∇2δ(3)(r) , (20)

and then subtracting Eq. (20) from Eq. (19).
Applying the Green’s function method, we then find that

the general solution φ(r) of the PBP equation given by
Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
elementary contributions (18) weighed by the given charge
density ρ(r), that is

φ(r) =
∫

ρ(r′)

(
1 − e−|r−r′|/a

)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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applying the Pa operator to each potential leading to
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and
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and then subtracting Eq. (20) from Eq. (19).
Applying the Green’s function method, we then find that

the general solution φ(r) of the PBP equation given by
Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
elementary contributions (18) weighed by the given charge
density ρ(r), that is

φ(r) =
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ρ(r′)
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)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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Applying the Green’s function method, we then find that

the general solution φ(r) of the PBP equation given by
Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
elementary contributions (18) weighed by the given charge
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ρ(r′)
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)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
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and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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and
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Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
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)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
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BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2

∫ ∞

0
dr ′ r ′e−r ′/b

∫ π

0

dθ sin θ
√
r2 + r ′2 − 2rr ′ cos θ ′

,

= 1
b2

∫ ∞

0

dr ′ e−r ′/b

r

{
|r + r ′| − |r − r ′|

}
,

= 1
b2

∫ r

0
dr ′ r

′e−r ′/b

r
+ 1

b2

∫ ∞

r
dr ′ e−r ′/b . (26)

Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
[
− r ′

b − |r−r′|
a

]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
b − e− r

a

r [1 − (b/a)2] . (31)
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Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b
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≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
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∫
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The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as
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Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with
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∫
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exp
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]
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2
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Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
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]
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which shows that it leads to
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2

∫ ∞

0
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dr ′ e−r ′/b . (26)

Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
[
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b − |r−r′|
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]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
b − e− r

a

r [1 − (b/a)2] . (31)

123

Eur. Phys. J. C           (2019) 79:871 Page 5 of 13   871 

Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2
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0
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dr ′ e−r ′/b . (26)

Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
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b − |r−r′|
a

]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2
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0
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Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
[
− r ′

b − |r−r′|
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]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2

∫ ∞

0
dr ′ r ′e−r ′/b

∫ π

0

dθ sin θ
√
r2 + r ′2 − 2rr ′ cos θ ′

,

= 1
b2

∫ ∞

0

dr ′ e−r ′/b

r

{
|r + r ′| − |r − r ′|

}
,

= 1
b2

∫ r

0
dr ′ r

′e−r ′/b

r
+ 1

b2

∫ ∞

r
dr ′ e−r ′/b . (26)

Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
[
− r ′

b − |r−r′|
a

]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
b − e− r

a

r [1 − (b/a)2] . (31)
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the action given by Eq. (1) can also be expressed as

S0 = 1
2

∫
d4x

[
E2 − B2 + a2(∇ · E)2 − a2(Ė − ∇ × B)2

]
, (7)

while Eq. (3) gives rise to the four non-homogeneous
Maxwell equations, namely, one for the temporal component

(1 + a2!)∇ · E = j0 , (8)

and three for the space components

(1 + a2!)(∇ × B − ∂E
∂t

) = j . (9)

The homogeneous Maxwell equations, on the other hand,
remain the same as they amount to the very identities which
permit to describe the physical E and B fields, through
Eqs. (5) and (6) above, in terms of the gauge potential field
Aµ. In particular the absence of magnetic monopoles still
holds in BP’s generalization as the magnetic field B remains
divergenceless.

Let’s now focus on the static case where it is possible to
obtain the general solution and discuss the physical meaning
of the BP model. For a time-independent electromagnetic
field, Eqs. (8) and (9) reduce respectively to

(1 − a2∇2)∇ · E = j0 (10)

and

(1 − a2∇2)∇ × B = j (11)

containing now only space derivatives, while the homoge-
neous ones simply state that B is divergenceless and E irrota-
tional. In this case, inserting (5) disregarding time derivatives
into Eq. (10) leads to a generalized Poisson equation

(1 − a2∇2)∇2φ = −4πρ , (12)

where φ ≡ A0 represents the electrostatic potential and we
have written j0 = 4πρ for the electric charge density. By
defining the a-dependent fourth-order differential operator
Pa as

Pa ≡ (1 − a2∇2)∇2 (13)

we may rewrite Eq. (12) more compactly as

Paφ = −4πρ . (14)

Henceforth, we shall refer Eq. (14) as the Poisson–Bopp–
Podoslky (PBP) equation.

To solve the PBP equation given by Eq. (14), equivalently
Eq. (12), for an arbitrary given charge distribution ρ, let us
first consider the case of an elementary distribution resulting
from a fixed unity point charge localized at r0

ρr0(r) = δ(3)(r − r0) . (15)

For this case the solution φP,a(r) can be written as the dif-
ference between the usual Coulomb potential

φC (r) ≡ 1
r

(16)

and the Yukawa potential

φY,a(r) ≡ e−r/a

r
(17)

evaluated at r = |r − r0|. In fact, the BP potential centered
at r0, defined as

φP,a(|r − r0|) ≡ φC (|r − r0|) − φY,a(|r − r0|)

= 1 − e−|r−r0|/a

|r − r0|
, (18)

satisfies Eq. (14) for the elementary Dirac delta charge dis-
tribution given by Eq. (15). This can be directly seen by
applying the Pa operator to each potential leading to

PaφC (r) = −4π
[
δ(3)(r) − a2∇2δ(3)(r)

]
(19)

and

PaφY,a(r) = 4πa2∇2δ(3)(r) , (20)

and then subtracting Eq. (20) from Eq. (19).
Applying the Green’s function method, we then find that

the general solution φ(r) of the PBP equation given by
Eq. (14) subject to the boundary condition of vanishing
potential at infinity can be written as a superposition of kernel
elementary contributions (18) weighed by the given charge
density ρ(r), that is

φ(r) =
∫

ρ(r′)

(
1 − e−|r−r′|/a

)

|r − r′| dτ ′ , (21)

where dτ ′ denotes the integration volume element with
respect to the dummy integration variable r′. The ordinary
electrostatic solution is recovered in the limit that the BP
model parameter a goes to zero, i.e. a → 0, as expected.

For the point charge density given by Eq. (15), the ordi-
nary electrostatic solution given by the Coulomb electrostatic
potential φC (r) = 1

r in Eq. (16) diverges at the local point
r = r0, i.e. r = |r − r0| = 0, imposing the problem of
infinities discussed in our Introduction, Sect. 1, for the clas-
sical electrodynamics of point particles. On the other hand,
for non-null a, the BP potential φP,a(r) in Eq. (18) remains
finite in the limit r → 0 approaching to the finite value

φP,a(0) =
1
a

(22)

and reproduces back the Coulomb’s characteristic 1/r behav-
ior for large values of r compared to a. In Fig. 1, we plot
BP’s potential as a function of r as well as its two constituent
parts Coulomb’s and minus Yukawa’s for the numerical value
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Fig. 1 Podolsky potential for a = 0.5 as a function of the distance.
Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2

∫ ∞

0
dr ′ r ′e−r ′/b

∫ π

0

dθ sin θ
√
r2 + r ′2 − 2rr ′ cos θ ′

,

= 1
b2

∫ ∞

0

dr ′ e−r ′/b

r

{
|r + r ′| − |r − r ′|

}
,

= 1
b2

∫ r

0
dr ′ r

′e−r ′/b

r
+ 1

b2

∫ ∞

r
dr ′ e−r ′/b . (26)

Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
[
− r ′

b − |r−r′|
a

]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
b − e− r

a

r [1 − (b/a)2] . (31)
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Although both Coulomb’s and Yukawa’s potentials blow up at the origin,
their difference remains finite. In the limit a → 0 Podolsky’s potential
bends continually towards Coulomb’s potential

a = 0.5 in the same unit as the measured distance vari-
able r . Here, it may be worth noticing the important fact that
Coulomb’s potential doesn’t have any length scale parameter
while the BP’s potential has a natural length scale provided
by the real parametera. What follows in the next subsection is
that this parameter a introduced in the BP model action given
by Eq. (1) can be equivalently reinterpreted as the length
scale of a specific charge distribution removing the fiasco of
divergence for a point charge particle in ordinary local gauge
electrodynamics. In particular, we demonstrate that the BP
model solution for a point charge corresponds to an ordinary
electrodynamic solution for a specific charge distribution.
This motivates us in the subsequent section, Sect. 3, to eluci-
date the BP model as a natural way of providing Pauli–Villars
regularization in ordinary QED.

2.2 The BP potential from ordinary electrostatics

As discussed in our Introduction, Sect. 1, a non-null BP a-
parameter improves the model convergence properties by
means of the higher-order derivatives term. As a matter of
fact we have just seen Coulomb’s potential given by Eq. (16)
gets smoothed out becoming finite at the critical point r = r0
when we generalize Poisson’s equation including the conver-
gence parameter a into the PBP equation given by Eqs. (12)
or (14). In other words, in the BP model, Eq. (16) generalizes
to Eq. (18). However, we show below that it is also possible
to obtain the same effect within the realm of ordinary elec-
trostatics by using a specific charge distribution. Indeed, let’s
take a small positive length dimension parameter b and con-
sider the normalized charge distribution

ρ(b, r) = e−r/b

4πb2r
. (23)

Then, the general solution to Poisson’s equation gives the
corresponding potential

V (b, r) = 1
4πb2

∫
dτ ′ e−r ′/b

r ′|r − r′| . (24)

Using the spherical coordinates and writing

dτ ′ = r ′2 sin θ dφ dθ dr ′, (25)

one can see straightforwardly that the azimuthal part in φ

brings a 2π contribution and the integral in Eq. (24) is directly
worked out as

V (b, r) = 1
2b2

∫ ∞

0
dr ′ r ′e−r ′/b

∫ π

0

dθ sin θ
√
r2 + r ′2 − 2rr ′ cos θ ′

,

= 1
b2

∫ ∞
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{
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,

= 1
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0
dr ′ r

′e−r ′/b
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+ 1

b2

∫ ∞
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dr ′ e−r ′/b . (26)

Performing then the last two r ′ integrations, we obtain finally

V (b, r) = 1 − e−r/b

r
≡ φP,b(r) . (27)

Note the key fact that we dispensed completely the BP higher-
derivative a-dependent term in obtaining Eq. (27) as we used
only the standard ordinary electrodynamics. Nevertheless, it
represents the very BP potential with b playing the role of
the previous BP a-parameter.

To discuss this key point further, let’s now address the
following question: i.e., Which potential would be produced
by the charge distribution given by Eq. (23) in the BP model
context using the general solution given by Eq. (21)? The
answer to this question turns out to be an (a, b)-dependent
potential which we denote here by ψ(a, b, r). This sort of
double BP potential can be explicitly calculated using the
general solution given by (21) as

φ(r) = 1
4πb2

∫ e−r ′/b
(

1 − e−|r−r′|/a
)

r ′ |r − r′| dτ ′. (28)

The first part of Eq. (28) has been previously calculated and
shown to represent φP,b(r). Therefore, we write

ψ(a, b, r) = φP,b(r) − ψ̄(a, b, r) (29)

with

ψ̄(a, b, r) ≡ 1
4πb2

∫
dτ ′

exp
[
− r ′

b − |r−r′|
a

]

r ′|r − r′| . (30)

The integration of Eq. (30) is explicitly given in Appendix A,
which shows that it leads to

ψ̄(a, b, r) = − e− r
b − e− r

a

r [1 − (b/a)2] . (31)
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By plugging this result back into Eq. (29), we obtain the final
result for the double BP potential as

ψ(a, b, r) = 1
r
+ a2e−r/a − b2e−r/b

r(b2 − a2)
. (32)

Specifically for r close to zero, we get a finite result without
any divergence:

lim
r→0

ψ(a, b, r) = 1
a + b

. (33)

We note here that in the a → 0 limit, Eq. (32) reproduces
Eq. (27), or vice-versa, i.e. in the b → 0 limit, Eq. (32) repro-
duces Eq. (18). The double BP potential given by Eq. (32)
is completely symmetric with respect to a and b and reveals
the equivalence of the result under the exchange of the role
between the two parameters a and b which have been intro-
duced originally with seemingly different physical motiva-
tion or physical meaning. The result of the ordinary electro-
statics, i.e. a = 0, for a specific charge charge distribution
given by Eq. (23) with b ̸= 0 is completely equivalent to the
result of the BP electrostatics with a length scale parameter
a ̸= 0 for a local point charge, i.e. b = 0. Thus, it allows
the exchange of the role between the length scale parame-
ter a introduced in the BP model for a point charge and the
length scale parameter b for a specific charge distribution
given by Eq. (23) in the ordinary electrostatics. To the extent
that modifying the concept of point charge to an extended
charge distribution provides the physical meaning of charge
renormalization as the charge screening due to the Dirac vac-
uum in QED, our finding here motivates us to reinterpret the
BP’s generalized electrodynamic action given by Eq. (1) as
a natural way of providing Pauli–Villars regularization in
ordinary QED. In the next section, we address this possible
reinterpretation by looking into the details of the gauge fixing
in the BP model with its functional quantization.

3 Gauge fixing and functional quantization

As already stated in the last paragraph of our Introduction,
Sect. 1, due to gauge invariance, a direct propagator for the
gauge field in BP model is ill-defined. That happens because
we are working with a constrained system and to preserve
explicit covariance we use more field variables than degrees
of freedom [30]. In order to proceed with the quantization of
the model, similarly to ordinary electrodynamics, we must
choose a specific gauge suitable for perturbative calculations.
In the following subsections, we show how to achieve the
generalized Lorenz and axial gauges performing the func-
tional quantization of BP model. In both cases, we shall
obtain the Green functions generating functional by means
of a suitable generalization of the Faddeev-Popov method.

3.1 Generalized Lorenz gauge

Concerning the covariant Lorenz gauge we generalize the
standard gauge-fixing term in the Maxwell Lagrangian to

LLGF = − 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)(∂λ∂ν Aν) (34)

which is then added to the original Lagrangian in the inte-
grand of action given by Eq. (1). Besides BP’s a-parameter,
the gauge-fixing given by Eq. (34) is allowed to depend on
the additional free real gauge parameter ξ . For the particular
case ξ = 1 the necessity of this natural term can already be
seen in the original papers of Podolsky, Kikuchi and Schwed
[12,13]. Although this isolated term cannot be found directly
in Ref. [12], a careful reading shows that it is in fact inserted
and summed up in their so called modified Lagrangian up to
total divergences. However, the second part of Eq. (34) has
been tacitly omitted in the more modern treatments of BP’s
model and only recently has it been reintroduced in BP’s
context by Bufalo, Pimentel and Soto [27].

With the addition of (34) the fixed action SLGF = S0 +∫
d4x LLGF now reads

SLGF =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

− 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)2

}
. (35)

By demanding stationarity with respect to the gauge field,
that is, by enforcing

δSLGF

δAµ(x)
= 0 , (36)

we obtain the equations of motion

(1 + a2!)

(
∂νFνµ + 1

ξ
∂µ∂ν Aν

)
= 0 , (37)

which generalize Eq. (3) in the case of null external source.
In terms of the gauge field Aµ the equations of motion given
by Eq. (37) can also be rewritten as

(1 + a2!)

(
!ηµν − ∂µ∂ν + 1

ξ
∂µ∂ν

)
Aν = 0 . (38)

For the Feynman-t’Hooft gauge choice ξ = 1, it reduces to
the simpler result2

(1 + a2!)!Aµ = 0 . (39)

This means that in the Lorenz gauge the free field equations
of motion comprise a superposition of plane waves describ-
ing both massive and massless particles. As previously men-
tioned we remark the importance of the sign choice in Eq. (1)

2 The retarded Green functions for the wave Eq. (39) in three, two and
one spatial dimensions have been reported in Ref. [22].

123

  871 Page 6 of 13 Eur. Phys. J. C           (2019) 79:871 

By plugging this result back into Eq. (29), we obtain the final
result for the double BP potential as

ψ(a, b, r) = 1
r
+ a2e−r/a − b2e−r/b

r(b2 − a2)
. (32)

Specifically for r close to zero, we get a finite result without
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obtain the Green functions generating functional by means
of a suitable generalization of the Faddeev-Popov method.
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The formal method of regularization of mathematical expressions of sums of products of different types
of b-functions is 6rst applied to the example of vacuum polarization. It is emphasized that only a regular-
ization of the whole expression without factorization leads to gauge invariant results. It is further shown,
that for the regularization of the expression for the magnetic moment of the electron, a single auxiliary
mass is sufhcient, provided that different functions of the same particle (e.g. , the photon functions D and
D(')) are regularized in the same way and that the regularization of products of two electron functions is
never factorized. The result is then the same as that of using Schwinger's method of introducing suitable
parameters as new integration variables in the argument of b-functions, without using any auxiliary masses.

$1. INTRODUCTION by the argument that a time-like component of the
current commutes with j„at all points of a space-like
surface. 4 The specialization of the general invariant
form of the commutator to this case, however, gives a
result proportional to

N spite of many successes of the new relativistically
- invariant formalism of quantum electrodynamics, '

which is based on the idea of "renormalization" of mass
and charge, there are still some problems of uniqueness
left, which need further clarification. The most impor-
tant one seems to us to be the problem of the self-energy
of the photon, which was raised by Wentzel's' remark
that the formal application of Schwinger's original
technique of integration to the resulting integral gives
a 6nite result diferent from zero for this self-energy.
This problem is formally contained in the more general
problem of the gauge invariance for the resulting current
due to vacuum-polarization by an arbitrary external
field (not necessarily by a, light wave). Schwinger' has
shown that this current is given by

6&@(x—x') (c)t1'"/c)x,),
which is indeterminate due to the singularity of
c)6~"/i)x„on the light cone, which has the form
x„/(x,x,). The whole expression may therefore be

written as
8'4'(x—x') (r)A "&/c)x„),

in agreement with the straightforward computation
(see f2 below).
The occurrence of products of functions with a 8-type

singularity and with a pole is typical of the new formal-
ism and seems to be the main source of the remaining
uniqueness problems.
In order to overcome these ambiguities we apply in

the following the method of regularization of 6-func-
tions (or products of them) with the help of an intro-
duction of auxiliary masses. This method has already
a long history. Much work has been done to compensate
the infinities in the self-energy of the electron with the
help of auxiliary fields corresponding to other neutral
particles with finite rest-masses interacting with the
electrons. ' Some authors assumed formally a negative
energy of the free auxiliary particles, while others did
not need these artificial assumptions and could obtain
the necessary compensations by using the diferent sign
of the self-energy of the electron due to its interaction
with different kinds of fmlds (for instance scalar fields
os. vector fields). We shall denote these theories, in
which the auxiliary particles with finite masses and
positive energy are assumed to be observable in princi-
ple and are described by observables entering the Hamil-

Z

(j„(x))=- d'x'(D„(x), j,(x')$),.(x—x')A„*i(x')
when e(x) =+1 for t 0; A, '"'(x) is the vector potential
of the external field and (Lj„(x),j„(x')$)s is the vacuum
expectation value of the commulator of j„(x) withj,(x). The condition for the gauge invariance of this
expression for (j„(x)) (which includes the vanishing of
the photon self-energy as a special case) is:

i)/clx„ I ([j„(x),j„(x')$)se(x—x') I =0.
Schwinger tried to prove the validity of this condi-

tion, after reducing it to the form

' S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946). J. Schwinger,
Phys. Rev. 74, 1439 (1948); Phys. Rev. 75, 651 (1949); Phys.
Rev. 75, 1912 (1949). These papers are quoted in the following
as SI, SII, SIII. Our notations follow as closely as possible those
of these papers. For the definitions and the properties of the
functions 6,A: (Lk is identical with 6 in SII), and 6&') see particu-
larly the appendix of SII. In this paper natural units k=c=1 are
used throughout. F. J. Dyson, Phys. Rev. 75, 486 (1949), and
Phvs. Rev. 75, 1736 (1949). In the following quoted as DI, anDII.

2 G. Wentzel, Phys. Rev. 74, 1070 (1948).
3 /II, Kq. {2.19),

d 4 SII, Eq. (2.29).
. 5 Compare for older literature (including his own contributions),
A. Pais, The Development of the Theory of the Electrorl, (Princeton
University Press, Princeton, New Jersey, 1948).
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Abstract We discuss an inherent Pauli–Villars regulariza-
tion in Bopp–Podolsky’s generalized electrodynamics. Intro-
ducing gauge-fixing terms for Bopp–Podolsky’s general-
ized electrodynamic action, we realize a unique feature for
the corresponding photon propagator with a built-in Pauli–
Villars regularization independent of the gauge choice made
in Maxwell’s usual electromagnetism. According to our real-
ization, the length dimensional parameter a associated with
Bopp–Podolsky’s higher order derivatives corresponds to
the inverse of the Pauli–Villars regularization mass scale !,
i.e. a = 1/!. Solving explicitly the classical static Bopp–
Podolsky’s equations of motion for a specific charge distri-
bution, we explore the physical meaning of the parameter a
in terms of the size of the charge distribution. As an offspring
of the generalized photon propagator analysis, we also dis-
cuss our findings regarding on the issue of the two-term vs.
three-term photon propagator in light-front dynamics.

1 Introduction

Quantum electrodynamics (QED) may be regarded as a pro-
totype of quantum field theories with well-established renor-
malization program which effectively regulates the infinities
present in the local gauge field theory. Due to the infinities
that cannot be gotten around, e.g. radiative corrections in
QED, one needs to treat and tame such infinities taking a cer-
tain regularization procedure with the renormalization condi-
tion for physical amplitudes. The very impressive agreement
between high precision measurements in accelerators and
the predictions of quantum field theory in the presence of
radiative corrections is the key for the indication of success-
ful renormalization program. Phenomenological success of

a e-mail: thibes@uesb.edu.br

atomic model appears ultimately backed up by the successful
QED renormalization program.

Historically, the problem of infinities first arose in the clas-
sical electrodynamics of point particles in the 19th and early
20th century. The well-known example is the mass of elec-
tron including the electromagnetic mass mem due to its own
electrostatic field given by mem = e2

8πre
with the charge e

and the radius re of the electron, which becomes an infinity
as re → 0. It may not be an overstatement that the early work
of Lorentz and Abraham [1–3] including the bare mass of the
spherical shell as well as mem to take a consistent point limit
provided the inspiration for later development of the renor-
malization program in QED and other local field theories.
Modifying the concept of point charge to an extended charge
distribution lends also the physical meaning of charge renor-
malization as the charge screening due to the Dirac vacuum
in QED.

In the same vein, Bopp [4] and Podolsky [5] attempted
to remove infinities inherent in the usual treatment of
point charges introducing higher order derivatives in the
Lagrangian of electrodynamics while maintaining the equa-
tions of motion still linear in the fields and preserving gauge
invariance. In particular, Podolsky discussed the classical
aspects of his model presenting the equations of motion,
energy-momentum tensor and plane wave field solutions [5].
Traditionally, however, it has become the case to view the
model due to Bopp and Podolsky (“BP model”) as a mech-
anism to describe massive photons without breaking gauge
invariance as the propagating modes of the model comprise
both massless photons as well as massive ones. In this work,
we demonstrate that the BP model solution for a point charge
in electrodynamics corresponds to an ordinary electrody-
namic solution for a specific charge distribution. Motivated
by this possible reinterpretation of BP model solution in elec-
trodynamics, we further elucidate the BP model as a natu-
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By plugging this result back into Eq. (29), we obtain the final
result for the double BP potential as

ψ(a, b, r) = 1
r
+ a2e−r/a − b2e−r/b

r(b2 − a2)
. (32)

Specifically for r close to zero, we get a finite result without
any divergence:

lim
r→0

ψ(a, b, r) = 1
a + b

. (33)

We note here that in the a → 0 limit, Eq. (32) reproduces
Eq. (27), or vice-versa, i.e. in the b → 0 limit, Eq. (32) repro-
duces Eq. (18). The double BP potential given by Eq. (32)
is completely symmetric with respect to a and b and reveals
the equivalence of the result under the exchange of the role
between the two parameters a and b which have been intro-
duced originally with seemingly different physical motiva-
tion or physical meaning. The result of the ordinary electro-
statics, i.e. a = 0, for a specific charge charge distribution
given by Eq. (23) with b ̸= 0 is completely equivalent to the
result of the BP electrostatics with a length scale parameter
a ̸= 0 for a local point charge, i.e. b = 0. Thus, it allows
the exchange of the role between the length scale parame-
ter a introduced in the BP model for a point charge and the
length scale parameter b for a specific charge distribution
given by Eq. (23) in the ordinary electrostatics. To the extent
that modifying the concept of point charge to an extended
charge distribution provides the physical meaning of charge
renormalization as the charge screening due to the Dirac vac-
uum in QED, our finding here motivates us to reinterpret the
BP’s generalized electrodynamic action given by Eq. (1) as
a natural way of providing Pauli–Villars regularization in
ordinary QED. In the next section, we address this possible
reinterpretation by looking into the details of the gauge fixing
in the BP model with its functional quantization.

3 Gauge fixing and functional quantization

As already stated in the last paragraph of our Introduction,
Sect. 1, due to gauge invariance, a direct propagator for the
gauge field in BP model is ill-defined. That happens because
we are working with a constrained system and to preserve
explicit covariance we use more field variables than degrees
of freedom [30]. In order to proceed with the quantization of
the model, similarly to ordinary electrodynamics, we must
choose a specific gauge suitable for perturbative calculations.
In the following subsections, we show how to achieve the
generalized Lorenz and axial gauges performing the func-
tional quantization of BP model. In both cases, we shall
obtain the Green functions generating functional by means
of a suitable generalization of the Faddeev-Popov method.

3.1 Generalized Lorenz gauge

Concerning the covariant Lorenz gauge we generalize the
standard gauge-fixing term in the Maxwell Lagrangian to

LLGF = − 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)(∂λ∂ν Aν) (34)

which is then added to the original Lagrangian in the inte-
grand of action given by Eq. (1). Besides BP’s a-parameter,
the gauge-fixing given by Eq. (34) is allowed to depend on
the additional free real gauge parameter ξ . For the particular
case ξ = 1 the necessity of this natural term can already be
seen in the original papers of Podolsky, Kikuchi and Schwed
[12,13]. Although this isolated term cannot be found directly
in Ref. [12], a careful reading shows that it is in fact inserted
and summed up in their so called modified Lagrangian up to
total divergences. However, the second part of Eq. (34) has
been tacitly omitted in the more modern treatments of BP’s
model and only recently has it been reintroduced in BP’s
context by Bufalo, Pimentel and Soto [27].

With the addition of (34) the fixed action SLGF = S0 +∫
d4x LLGF now reads

SLGF =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

− 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)2

}
. (35)

By demanding stationarity with respect to the gauge field,
that is, by enforcing

δSLGF

δAµ(x)
= 0 , (36)

we obtain the equations of motion

(1 + a2!)

(
∂νFνµ + 1

ξ
∂µ∂ν Aν

)
= 0 , (37)

which generalize Eq. (3) in the case of null external source.
In terms of the gauge field Aµ the equations of motion given
by Eq. (37) can also be rewritten as

(1 + a2!)

(
!ηµν − ∂µ∂ν + 1

ξ
∂µ∂ν

)
Aν = 0 . (38)

For the Feynman-t’Hooft gauge choice ξ = 1, it reduces to
the simpler result2

(1 + a2!)!Aµ = 0 . (39)

This means that in the Lorenz gauge the free field equations
of motion comprise a superposition of plane waves describ-
ing both massive and massless particles. As previously men-
tioned we remark the importance of the sign choice in Eq. (1)

2 The retarded Green functions for the wave Eq. (39) in three, two and
one spatial dimensions have been reported in Ref. [22].
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By plugging this result back into Eq. (29), we obtain the final
result for the double BP potential as

ψ(a, b, r) = 1
r
+ a2e−r/a − b2e−r/b

r(b2 − a2)
. (32)

Specifically for r close to zero, we get a finite result without
any divergence:

lim
r→0

ψ(a, b, r) = 1
a + b

. (33)

We note here that in the a → 0 limit, Eq. (32) reproduces
Eq. (27), or vice-versa, i.e. in the b → 0 limit, Eq. (32) repro-
duces Eq. (18). The double BP potential given by Eq. (32)
is completely symmetric with respect to a and b and reveals
the equivalence of the result under the exchange of the role
between the two parameters a and b which have been intro-
duced originally with seemingly different physical motiva-
tion or physical meaning. The result of the ordinary electro-
statics, i.e. a = 0, for a specific charge charge distribution
given by Eq. (23) with b ̸= 0 is completely equivalent to the
result of the BP electrostatics with a length scale parameter
a ̸= 0 for a local point charge, i.e. b = 0. Thus, it allows
the exchange of the role between the length scale parame-
ter a introduced in the BP model for a point charge and the
length scale parameter b for a specific charge distribution
given by Eq. (23) in the ordinary electrostatics. To the extent
that modifying the concept of point charge to an extended
charge distribution provides the physical meaning of charge
renormalization as the charge screening due to the Dirac vac-
uum in QED, our finding here motivates us to reinterpret the
BP’s generalized electrodynamic action given by Eq. (1) as
a natural way of providing Pauli–Villars regularization in
ordinary QED. In the next section, we address this possible
reinterpretation by looking into the details of the gauge fixing
in the BP model with its functional quantization.

3 Gauge fixing and functional quantization

As already stated in the last paragraph of our Introduction,
Sect. 1, due to gauge invariance, a direct propagator for the
gauge field in BP model is ill-defined. That happens because
we are working with a constrained system and to preserve
explicit covariance we use more field variables than degrees
of freedom [30]. In order to proceed with the quantization of
the model, similarly to ordinary electrodynamics, we must
choose a specific gauge suitable for perturbative calculations.
In the following subsections, we show how to achieve the
generalized Lorenz and axial gauges performing the func-
tional quantization of BP model. In both cases, we shall
obtain the Green functions generating functional by means
of a suitable generalization of the Faddeev-Popov method.

3.1 Generalized Lorenz gauge

Concerning the covariant Lorenz gauge we generalize the
standard gauge-fixing term in the Maxwell Lagrangian to

LLGF = − 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)(∂λ∂ν Aν) (34)

which is then added to the original Lagrangian in the inte-
grand of action given by Eq. (1). Besides BP’s a-parameter,
the gauge-fixing given by Eq. (34) is allowed to depend on
the additional free real gauge parameter ξ . For the particular
case ξ = 1 the necessity of this natural term can already be
seen in the original papers of Podolsky, Kikuchi and Schwed
[12,13]. Although this isolated term cannot be found directly
in Ref. [12], a careful reading shows that it is in fact inserted
and summed up in their so called modified Lagrangian up to
total divergences. However, the second part of Eq. (34) has
been tacitly omitted in the more modern treatments of BP’s
model and only recently has it been reintroduced in BP’s
context by Bufalo, Pimentel and Soto [27].

With the addition of (34) the fixed action SLGF = S0 +∫
d4x LLGF now reads

SLGF =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

− 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)2

}
. (35)

By demanding stationarity with respect to the gauge field,
that is, by enforcing

δSLGF

δAµ(x)
= 0 , (36)

we obtain the equations of motion

(1 + a2!)

(
∂νFνµ + 1

ξ
∂µ∂ν Aν

)
= 0 , (37)

which generalize Eq. (3) in the case of null external source.
In terms of the gauge field Aµ the equations of motion given
by Eq. (37) can also be rewritten as

(1 + a2!)

(
!ηµν − ∂µ∂ν + 1

ξ
∂µ∂ν

)
Aν = 0 . (38)

For the Feynman-t’Hooft gauge choice ξ = 1, it reduces to
the simpler result2

(1 + a2!)!Aµ = 0 . (39)

This means that in the Lorenz gauge the free field equations
of motion comprise a superposition of plane waves describ-
ing both massive and massless particles. As previously men-
tioned we remark the importance of the sign choice in Eq. (1)

2 The retarded Green functions for the wave Eq. (39) in three, two and
one spatial dimensions have been reported in Ref. [22].
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By plugging this result back into Eq. (29), we obtain the final
result for the double BP potential as

ψ(a, b, r) = 1
r
+ a2e−r/a − b2e−r/b

r(b2 − a2)
. (32)

Specifically for r close to zero, we get a finite result without
any divergence:

lim
r→0

ψ(a, b, r) = 1
a + b

. (33)

We note here that in the a → 0 limit, Eq. (32) reproduces
Eq. (27), or vice-versa, i.e. in the b → 0 limit, Eq. (32) repro-
duces Eq. (18). The double BP potential given by Eq. (32)
is completely symmetric with respect to a and b and reveals
the equivalence of the result under the exchange of the role
between the two parameters a and b which have been intro-
duced originally with seemingly different physical motiva-
tion or physical meaning. The result of the ordinary electro-
statics, i.e. a = 0, for a specific charge charge distribution
given by Eq. (23) with b ̸= 0 is completely equivalent to the
result of the BP electrostatics with a length scale parameter
a ̸= 0 for a local point charge, i.e. b = 0. Thus, it allows
the exchange of the role between the length scale parame-
ter a introduced in the BP model for a point charge and the
length scale parameter b for a specific charge distribution
given by Eq. (23) in the ordinary electrostatics. To the extent
that modifying the concept of point charge to an extended
charge distribution provides the physical meaning of charge
renormalization as the charge screening due to the Dirac vac-
uum in QED, our finding here motivates us to reinterpret the
BP’s generalized electrodynamic action given by Eq. (1) as
a natural way of providing Pauli–Villars regularization in
ordinary QED. In the next section, we address this possible
reinterpretation by looking into the details of the gauge fixing
in the BP model with its functional quantization.

3 Gauge fixing and functional quantization

As already stated in the last paragraph of our Introduction,
Sect. 1, due to gauge invariance, a direct propagator for the
gauge field in BP model is ill-defined. That happens because
we are working with a constrained system and to preserve
explicit covariance we use more field variables than degrees
of freedom [30]. In order to proceed with the quantization of
the model, similarly to ordinary electrodynamics, we must
choose a specific gauge suitable for perturbative calculations.
In the following subsections, we show how to achieve the
generalized Lorenz and axial gauges performing the func-
tional quantization of BP model. In both cases, we shall
obtain the Green functions generating functional by means
of a suitable generalization of the Faddeev-Popov method.

3.1 Generalized Lorenz gauge

Concerning the covariant Lorenz gauge we generalize the
standard gauge-fixing term in the Maxwell Lagrangian to

LLGF = − 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)(∂λ∂ν Aν) (34)

which is then added to the original Lagrangian in the inte-
grand of action given by Eq. (1). Besides BP’s a-parameter,
the gauge-fixing given by Eq. (34) is allowed to depend on
the additional free real gauge parameter ξ . For the particular
case ξ = 1 the necessity of this natural term can already be
seen in the original papers of Podolsky, Kikuchi and Schwed
[12,13]. Although this isolated term cannot be found directly
in Ref. [12], a careful reading shows that it is in fact inserted
and summed up in their so called modified Lagrangian up to
total divergences. However, the second part of Eq. (34) has
been tacitly omitted in the more modern treatments of BP’s
model and only recently has it been reintroduced in BP’s
context by Bufalo, Pimentel and Soto [27].

With the addition of (34) the fixed action SLGF = S0 +∫
d4x LLGF now reads

SLGF =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

− 1
2ξ

(∂µAµ)2 + a2

2ξ
(∂λ∂µAµ)2

}
. (35)

By demanding stationarity with respect to the gauge field,
that is, by enforcing

δSLGF

δAµ(x)
= 0 , (36)

we obtain the equations of motion

(1 + a2!)

(
∂νFνµ + 1

ξ
∂µ∂ν Aν

)
= 0 , (37)

which generalize Eq. (3) in the case of null external source.
In terms of the gauge field Aµ the equations of motion given
by Eq. (37) can also be rewritten as

(1 + a2!)

(
!ηµν − ∂µ∂ν + 1

ξ
∂µ∂ν

)
Aν = 0 . (38)

For the Feynman-t’Hooft gauge choice ξ = 1, it reduces to
the simpler result2

(1 + a2!)!Aµ = 0 . (39)

This means that in the Lorenz gauge the free field equations
of motion comprise a superposition of plane waves describ-
ing both massive and massless particles. As previously men-
tioned we remark the importance of the sign choice in Eq. (1)

2 The retarded Green functions for the wave Eq. (39) in three, two and
one spatial dimensions have been reported in Ref. [22].
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for this physical interpretation. In fact the general solution to
Eq. (39) can be written as

Aµ(x) =
∫

d4k
(2π)3

{[
δ(k2)aµ(k)+ δ(k2 − 1/a2)bµ(k)

]

e−ik·x + h.c.
}
, (40)

for arbitrary functions aµ(k) and bµ(k).
The generalized photon propagator of the BP model in the

current working Lorenz gauge can be read directly from the
inverse of the differential operator acting on Aµ in Eq. (38).
Or equivalently, by performing integrations by parts and dis-
carding boundary terms, the action SLGF in Eq. (35) may be
rewritten as

SLGF = 1
2

∫
d4x Aµ(1 + a2!)

×
[
!ηµν − (1 − 1

ξ
)∂µ∂ν

]
Aν . (41)

In momentum space, this gives rise to the operator

Mµν(k) = −(1 − a2k2)

(
k2ηµν − (1 − 1

ξ
)kµkν

)
, (42)

and permits us to write the photon propagator as

Pµν(k) =
−1

(1 − a2k2)k2

[
ηµν + (ξ − 1)

kµkν

k2

]
. (43)

One can straightforwardly check that PµλMλν = δν
µ, con-

firming that Eq. (34) leads to a neat simple expression for the
photon propagator above with the additional massive simple
pole 1/a2. The Landau gauge result is obtained for ξ = 0.

In the following, we show that the gauge-fixing term given
by Eq. (34) can be obtained from the original BP Lagrangian
by imposing the condition

(1 + a2!)∂µAµ = 0 (44)

in the Green’s function generating functional by means of
the well-known Faddeev-Popov procedure [39]. This can be
done introducing Eq. (44) via a Dirac delta functional in the
integration measure. Explicitly we can write the generating
functional as

Z [ jµ] = N
∫

DAµ(FP δ
(
(1 + a2!)∂µAµ

)

× exp
{
i S0 − i

∫
d4x jµAµ

}
(45)

where N is a normalization constant and (FP represents
the determinant which arises from the Jacobian of a gauge
transformation in the condition given by Eq. (44), that is,

(FP = det (1 + a2!)! . (46)

By means of introducing a pair of anticommuting ghost fields
(C, C̄) and an auxiliary Nakanishi-Lautrup [40,41] field B,
we can rewrite the generating functional, after a convenient
redefinition of the normalization factor, as

Z [ jµ] = N
∫

DAµDCDC̄DB exp
{
i S0

+i
∫

d4x
[
C̄(1 + a2!)!C + B(1 + a2!)∂µAµ

−a2ξ

2
∂µB∂µB + ξ B2

2
− jµAµ

]}
. (47)

Note that the action in the exponential argument is invariant
under the BRS transformation

δB Aµ = ∂µC , δBC̄ = −B , (48)

where the BRS operator δB has Grassmann parity one.
A functional integration over the B field finally leads to

Z [ jµ] = N
∫

DAµDCDC̄ exp {i [SLGF + SLGG + Sext ]}
(49)

with SLGF given by Eq. (35),

SLGG =
∫

d4x C̄(1 + a2!)!C (50)

and

Sext = −
∫

d4x jµAµ , (51)

thus justifying the Lorenz gauge fixing term given by
Eq. (34).

We have explicitly shown how the condition given by
Eq. (44) leads through the Faddeev-Popov procedure to the
gauge fixing term given by Eq. (34) and calculated the corre-
sponding propagator for BP’s generalized electrodynamics.
In the next subsection, we turn our attention to the axial and
light-front gauges.

3.2 Axial and light-front gauges

The axial gauge fixing has been originally introduced by
Kummer [37] and since then has been studied in the liter-
ature for a long time. It is a noncovariant gauge in the sense
that it relies on a choice of an arbitrary fixed direction in
space-time nµ. It encompasses the light-front gauge as a spe-
cial case when nµ is light-like. For an interesting and lively
review of the axial, light-front as well as other noncovariant
gauges in the context of non Abelian theories we cite Ref.
[38]. In the present case of BP model, in order to implement
the axial gauge fixing we pick up a specific constant non-null
four-vector nµ in space-time and write
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for this physical interpretation. In fact the general solution to
Eq. (39) can be written as

Aµ(x) =
∫

d4k
(2π)3

{[
δ(k2)aµ(k)+ δ(k2 − 1/a2)bµ(k)

]

e−ik·x + h.c.
}
, (40)

for arbitrary functions aµ(k) and bµ(k).
The generalized photon propagator of the BP model in the

current working Lorenz gauge can be read directly from the
inverse of the differential operator acting on Aµ in Eq. (38).
Or equivalently, by performing integrations by parts and dis-
carding boundary terms, the action SLGF in Eq. (35) may be
rewritten as

SLGF = 1
2

∫
d4x Aµ(1 + a2!)

×
[
!ηµν − (1 − 1

ξ
)∂µ∂ν

]
Aν . (41)

In momentum space, this gives rise to the operator

Mµν(k) = −(1 − a2k2)

(
k2ηµν − (1 − 1

ξ
)kµkν

)
, (42)

and permits us to write the photon propagator as

Pµν(k) =
−1

(1 − a2k2)k2

[
ηµν + (ξ − 1)

kµkν

k2

]
. (43)

One can straightforwardly check that PµλMλν = δν
µ, con-

firming that Eq. (34) leads to a neat simple expression for the
photon propagator above with the additional massive simple
pole 1/a2. The Landau gauge result is obtained for ξ = 0.

In the following, we show that the gauge-fixing term given
by Eq. (34) can be obtained from the original BP Lagrangian
by imposing the condition

(1 + a2!)∂µAµ = 0 (44)

in the Green’s function generating functional by means of
the well-known Faddeev-Popov procedure [39]. This can be
done introducing Eq. (44) via a Dirac delta functional in the
integration measure. Explicitly we can write the generating
functional as

Z [ jµ] = N
∫

DAµ(FP δ
(
(1 + a2!)∂µAµ

)

× exp
{
i S0 − i

∫
d4x jµAµ

}
(45)

where N is a normalization constant and (FP represents
the determinant which arises from the Jacobian of a gauge
transformation in the condition given by Eq. (44), that is,

(FP = det (1 + a2!)! . (46)

By means of introducing a pair of anticommuting ghost fields
(C, C̄) and an auxiliary Nakanishi-Lautrup [40,41] field B,
we can rewrite the generating functional, after a convenient
redefinition of the normalization factor, as

Z [ jµ] = N
∫

DAµDCDC̄DB exp
{
i S0

+i
∫

d4x
[
C̄(1 + a2!)!C + B(1 + a2!)∂µAµ

−a2ξ

2
∂µB∂µB + ξ B2

2
− jµAµ

]}
. (47)

Note that the action in the exponential argument is invariant
under the BRS transformation

δB Aµ = ∂µC , δBC̄ = −B , (48)

where the BRS operator δB has Grassmann parity one.
A functional integration over the B field finally leads to

Z [ jµ] = N
∫

DAµDCDC̄ exp {i [SLGF + SLGG + Sext ]}
(49)

with SLGF given by Eq. (35),

SLGG =
∫

d4x C̄(1 + a2!)!C (50)

and

Sext = −
∫

d4x jµAµ , (51)

thus justifying the Lorenz gauge fixing term given by
Eq. (34).

We have explicitly shown how the condition given by
Eq. (44) leads through the Faddeev-Popov procedure to the
gauge fixing term given by Eq. (34) and calculated the corre-
sponding propagator for BP’s generalized electrodynamics.
In the next subsection, we turn our attention to the axial and
light-front gauges.

3.2 Axial and light-front gauges

The axial gauge fixing has been originally introduced by
Kummer [37] and since then has been studied in the liter-
ature for a long time. It is a noncovariant gauge in the sense
that it relies on a choice of an arbitrary fixed direction in
space-time nµ. It encompasses the light-front gauge as a spe-
cial case when nµ is light-like. For an interesting and lively
review of the axial, light-front as well as other noncovariant
gauges in the context of non Abelian theories we cite Ref.
[38]. In the present case of BP model, in order to implement
the axial gauge fixing we pick up a specific constant non-null
four-vector nµ in space-time and write
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LLF = − 1
2α

(nµAµ)2 + a2

2α
(nµ∂λAµ)(nν∂

λAν) , (52)

where α stands for a free gauge parameter. In ordinary elec-
trodynamics the axial gauge fixing term contains only the
first part of Eq. (52). The second part constitutes the natural
generalization for BP’s electrodynamics. According to the
nature of the directional vector nµ we have different types
of axial gauges. Namely temporal axial, light-front axial and
space or proper axial for respectively timelike, lightlike or
spacelike nµ. The differences among them lead to important
subtleties and turn out to be a key point in the canonical quan-
tization when one needs clearly to pick up a time direction
for the Hamiltonian evolution. In our present discussion how-
ever, we limit ourselves to the Lagrangian analysis proposing
Eq. (52) for a general axial gauge. Addition of the space-time
integral of LLF to BP’s action given by Eq. (1) results in the
axial gauge fixed action

SLF =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

− 1
2α

(nµAµ)2 + a2

2α
(nµ∂λAµ)2

}
, (53)

which, after discarding surface integration terms, can be
recast into

SLF = 1
2

∫
d4x Aµ(1 + a2!)

×
[
!ηµν − ∂µ∂ν − 1

α
nµnν

]
Aν . (54)

By performing a Fourier transformation, this action can be
rewritten in momentum space as

SLF = 1
(2π)4

∫
d4k Ãµ(k)Mµν(k) Ãν(−k) (55)

with

Mµν(k) ≡ −(1 − a2k2)(k2ηµν − kµkν + 1
α
nµnν) . (56)

The photon propagator of the BP model in the light-front
gauge is the inverse of Mµν , reading explicitly

Pµν(k) =
−1

k2(1 − a2k2)

×
[
ηµν +

(αk2 + n2)

(n · k)2 kµkν − 1
(n · k) (kµnν + kνnµ)

]
.

(57)

Consistently, for the case a = 0 this result reduces to the
usual photon propagator in the axial gauge [36]. Note that
despite the last term in Eq. (56), a term proportional to nµnν

does not show up in the propagator Pµν . For the light-front
gauge, we have n2 = 0 and by choosing the gauge parameter
α = 0 we get the simpler expression [42–44]

Pµν = −1
k2(1 − a2k2)

[
ηµν − 1

(n · k) (kµnν + kνnµ)
]
. (58)

Similarly to the Lorenz gauge, here we can justify the term
given by Eq. (52) by imposing the gauge condition

(1 + a2!)nµAµ = 0 (59)

in the generating functional by means of the Faddeev-Popov
procedure. In fact, we have here the Faddeev-Popov deter-
minant

(FP = det(1 + a2!)nµ∂µ (60)

which can be exponentiated by means of the introduction of
a pair of anticommuting ghost fields (C, C̄) leading to the
generating functional

Z [ jµ] = N
∫

DAµDCDC̄DB exp
{
i S0

+i
∫

d4x
[
C̄(1 + a2!)nµ∂µC + B(1 + a2!)

nµAµ − a2α

2
∂µB∂µB + αB2

2
− jµAµ

]}
,

(61)

where B is the Nakanishi-Lautrup field. Paralleling the
Lorenz gauge case, here we also have the BRS symmetry

δB Aµ = ∂µC , δBC̄ = −B . (62)

Integration over the Nakanishi-Lautrup field leads to an
effective action in the exponential argument as

Sef f = S0 +
∫

d4x
{
− 1

2α
(nµAµ)2

+ a2

2α
(nµ∂λAµ)(nν∂

λAν)+ C̄(1 + a2!)nµ∂µC
}

(63)

showing clearly the appearance of the proposed term given
by Eq. (52).

In the usual Maxwell case, there is a well-known discus-
sion in the literature regarding the propagator of the gauge
field in the light-front. It has been shown [35] that it is possi-
ble to consider a mixing of the Lorenz and light-front gauge
fixings leading to the three-term photon propagator [34]. In
the following we show that there exists a natural general-
ization of the ideas discussed in Ref. [35] to the current BP
model. Specifically, in order to obtain a three-term propaga-
tor, we define the axial Lorenz (AL) gauge-fixing Lagrangian
density as

LAL = − 1
β
(n · A)(∂ · A)+ a2

β
(nµ∂λAµ)(∂ν∂

λAν) , (64)

where now we denote by β the gauge free parameter. Pro-
ceeding analogously to the previous sections, we integrate
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where α stands for a free gauge parameter. In ordinary elec-
trodynamics the axial gauge fixing term contains only the
first part of Eq. (52). The second part constitutes the natural
generalization for BP’s electrodynamics. According to the
nature of the directional vector nµ we have different types
of axial gauges. Namely temporal axial, light-front axial and
space or proper axial for respectively timelike, lightlike or
spacelike nµ. The differences among them lead to important
subtleties and turn out to be a key point in the canonical quan-
tization when one needs clearly to pick up a time direction
for the Hamiltonian evolution. In our present discussion how-
ever, we limit ourselves to the Lagrangian analysis proposing
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which, after discarding surface integration terms, can be
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×
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α
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α
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The photon propagator of the BP model in the light-front
gauge is the inverse of Mµν , reading explicitly
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×
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ηµν +
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Consistently, for the case a = 0 this result reduces to the
usual photon propagator in the axial gauge [36]. Note that
despite the last term in Eq. (56), a term proportional to nµnν

does not show up in the propagator Pµν . For the light-front
gauge, we have n2 = 0 and by choosing the gauge parameter
α = 0 we get the simpler expression [42–44]

Pµν = −1
k2(1 − a2k2)

[
ηµν − 1

(n · k) (kµnν + kνnµ)
]
. (58)

Similarly to the Lorenz gauge, here we can justify the term
given by Eq. (52) by imposing the gauge condition

(1 + a2!)nµAµ = 0 (59)

in the generating functional by means of the Faddeev-Popov
procedure. In fact, we have here the Faddeev-Popov deter-
minant

(FP = det(1 + a2!)nµ∂µ (60)

which can be exponentiated by means of the introduction of
a pair of anticommuting ghost fields (C, C̄) leading to the
generating functional

Z [ jµ] = N
∫

DAµDCDC̄DB exp
{
i S0

+i
∫

d4x
[
C̄(1 + a2!)nµ∂µC + B(1 + a2!)

nµAµ − a2α

2
∂µB∂µB + αB2

2
− jµAµ

]}
,

(61)

where B is the Nakanishi-Lautrup field. Paralleling the
Lorenz gauge case, here we also have the BRS symmetry

δB Aµ = ∂µC , δBC̄ = −B . (62)

Integration over the Nakanishi-Lautrup field leads to an
effective action in the exponential argument as

Sef f = S0 +
∫

d4x
{
− 1
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(nµAµ)2

+ a2

2α
(nµ∂λAµ)(nν∂

λAν)+ C̄(1 + a2!)nµ∂µC
}

(63)

showing clearly the appearance of the proposed term given
by Eq. (52).

In the usual Maxwell case, there is a well-known discus-
sion in the literature regarding the propagator of the gauge
field in the light-front. It has been shown [35] that it is possi-
ble to consider a mixing of the Lorenz and light-front gauge
fixings leading to the three-term photon propagator [34]. In
the following we show that there exists a natural general-
ization of the ideas discussed in Ref. [35] to the current BP
model. Specifically, in order to obtain a three-term propaga-
tor, we define the axial Lorenz (AL) gauge-fixing Lagrangian
density as

LAL = − 1
β
(n · A)(∂ · A)+ a2

β
(nµ∂λAµ)(∂ν∂

λAν) , (64)

where now we denote by β the gauge free parameter. Pro-
ceeding analogously to the previous sections, we integrate
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where α stands for a free gauge parameter. In ordinary elec-
trodynamics the axial gauge fixing term contains only the
first part of Eq. (52). The second part constitutes the natural
generalization for BP’s electrodynamics. According to the
nature of the directional vector nµ we have different types
of axial gauges. Namely temporal axial, light-front axial and
space or proper axial for respectively timelike, lightlike or
spacelike nµ. The differences among them lead to important
subtleties and turn out to be a key point in the canonical quan-
tization when one needs clearly to pick up a time direction
for the Hamiltonian evolution. In our present discussion how-
ever, we limit ourselves to the Lagrangian analysis proposing
Eq. (52) for a general axial gauge. Addition of the space-time
integral of LLF to BP’s action given by Eq. (1) results in the
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which, after discarding surface integration terms, can be
recast into

SLF = 1
2

∫
d4x Aµ(1 + a2!)

×
[
!ηµν − ∂µ∂ν − 1

α
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]
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By performing a Fourier transformation, this action can be
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with

Mµν(k) ≡ −(1 − a2k2)(k2ηµν − kµkν + 1
α
nµnν) . (56)

The photon propagator of the BP model in the light-front
gauge is the inverse of Mµν , reading explicitly
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×
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ηµν +
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Consistently, for the case a = 0 this result reduces to the
usual photon propagator in the axial gauge [36]. Note that
despite the last term in Eq. (56), a term proportional to nµnν

does not show up in the propagator Pµν . For the light-front
gauge, we have n2 = 0 and by choosing the gauge parameter
α = 0 we get the simpler expression [42–44]
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[
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(n · k) (kµnν + kνnµ)
]
. (58)

Similarly to the Lorenz gauge, here we can justify the term
given by Eq. (52) by imposing the gauge condition

(1 + a2!)nµAµ = 0 (59)

in the generating functional by means of the Faddeev-Popov
procedure. In fact, we have here the Faddeev-Popov deter-
minant

(FP = det(1 + a2!)nµ∂µ (60)

which can be exponentiated by means of the introduction of
a pair of anticommuting ghost fields (C, C̄) leading to the
generating functional
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∂µB∂µB + αB2
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,

(61)

where B is the Nakanishi-Lautrup field. Paralleling the
Lorenz gauge case, here we also have the BRS symmetry

δB Aµ = ∂µC , δBC̄ = −B . (62)

Integration over the Nakanishi-Lautrup field leads to an
effective action in the exponential argument as
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− 1
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(nµAµ)2
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(nµ∂λAµ)(nν∂
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showing clearly the appearance of the proposed term given
by Eq. (52).

In the usual Maxwell case, there is a well-known discus-
sion in the literature regarding the propagator of the gauge
field in the light-front. It has been shown [35] that it is possi-
ble to consider a mixing of the Lorenz and light-front gauge
fixings leading to the three-term photon propagator [34]. In
the following we show that there exists a natural general-
ization of the ideas discussed in Ref. [35] to the current BP
model. Specifically, in order to obtain a three-term propaga-
tor, we define the axial Lorenz (AL) gauge-fixing Lagrangian
density as

LAL = − 1
β
(n · A)(∂ · A)+ a2

β
(nµ∂λAµ)(∂ν∂

λAν) , (64)

where now we denote by β the gauge free parameter. Pro-
ceeding analogously to the previous sections, we integrate
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where α stands for a free gauge parameter. In ordinary elec-
trodynamics the axial gauge fixing term contains only the
first part of Eq. (52). The second part constitutes the natural
generalization for BP’s electrodynamics. According to the
nature of the directional vector nµ we have different types
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space or proper axial for respectively timelike, lightlike or
spacelike nµ. The differences among them lead to important
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Consistently, for the case a = 0 this result reduces to the
usual photon propagator in the axial gauge [36]. Note that
despite the last term in Eq. (56), a term proportional to nµnν

does not show up in the propagator Pµν . For the light-front
gauge, we have n2 = 0 and by choosing the gauge parameter
α = 0 we get the simpler expression [42–44]
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where B is the Nakanishi-Lautrup field. Paralleling the
Lorenz gauge case, here we also have the BRS symmetry

δB Aµ = ∂µC , δBC̄ = −B . (62)

Integration over the Nakanishi-Lautrup field leads to an
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showing clearly the appearance of the proposed term given
by Eq. (52).

In the usual Maxwell case, there is a well-known discus-
sion in the literature regarding the propagator of the gauge
field in the light-front. It has been shown [35] that it is possi-
ble to consider a mixing of the Lorenz and light-front gauge
fixings leading to the three-term photon propagator [34]. In
the following we show that there exists a natural general-
ization of the ideas discussed in Ref. [35] to the current BP
model. Specifically, in order to obtain a three-term propaga-
tor, we define the axial Lorenz (AL) gauge-fixing Lagrangian
density as

LAL = − 1
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where now we denote by β the gauge free parameter. Pro-
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where α stands for a free gauge parameter. In ordinary elec-
trodynamics the axial gauge fixing term contains only the
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Consistently, for the case a = 0 this result reduces to the
usual photon propagator in the axial gauge [36]. Note that
despite the last term in Eq. (56), a term proportional to nµnν

does not show up in the propagator Pµν . For the light-front
gauge, we have n2 = 0 and by choosing the gauge parameter
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minant

(FP = det(1 + a2!)nµ∂µ (60)

which can be exponentiated by means of the introduction of
a pair of anticommuting ghost fields (C, C̄) leading to the
generating functional

Z [ jµ] = N
∫

DAµDCDC̄DB exp
{
i S0

+i
∫

d4x
[
C̄(1 + a2!)nµ∂µC + B(1 + a2!)

nµAµ − a2α

2
∂µB∂µB + αB2

2
− jµAµ

]}
,

(61)

where B is the Nakanishi-Lautrup field. Paralleling the
Lorenz gauge case, here we also have the BRS symmetry

δB Aµ = ∂µC , δBC̄ = −B . (62)

Integration over the Nakanishi-Lautrup field leads to an
effective action in the exponential argument as

Sef f = S0 +
∫

d4x
{
− 1

2α
(nµAµ)2

+ a2

2α
(nµ∂λAµ)(nν∂

λAν)+ C̄(1 + a2!)nµ∂µC
}

(63)

showing clearly the appearance of the proposed term given
by Eq. (52).

In the usual Maxwell case, there is a well-known discus-
sion in the literature regarding the propagator of the gauge
field in the light-front. It has been shown [35] that it is possi-
ble to consider a mixing of the Lorenz and light-front gauge
fixings leading to the three-term photon propagator [34]. In
the following we show that there exists a natural general-
ization of the ideas discussed in Ref. [35] to the current BP
model. Specifically, in order to obtain a three-term propaga-
tor, we define the axial Lorenz (AL) gauge-fixing Lagrangian
density as

LAL = − 1
β
(n · A)(∂ · A)+ a2

β
(nµ∂λAµ)(∂ν∂

λAν) , (64)

where now we denote by β the gauge free parameter. Pro-
ceeding analogously to the previous sections, we integrate
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
2

∫
d4x Aµ

×
[
(1 + a2!)(!ηµν − ∂µ∂ν − 1

β
(nµ∂ν − nν∂µ)

]
Aν .

(65)

By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν +

β2k2 + n2

(n · k)2 − n2k2 kµkν − n · k + iβk2

(n · k)2 − n2k2 kµnν

+ − n · k + iβk2

(n · k)2 − n2k2 kνnµ + k2

(n · k)2 − n2k2 nµnν

]
.

(66)

Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
k2

(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as

Z [ jµ] = N
∫

DAµDC+DC̄+

×DB+DC−DC̄−DB− exp
{
i S0

+i
∫

d4x
[
C̄+(1 + a2!)(! + rnµ∂µ)C+

+B+(1 + a2!)(∂µ + rnµ)Aµ

C̄−(1 + a2!)(! − rnµ∂µ)C−

+B−(1 + a2!)(∂µ − rnµ)Aµ

−a2β∂µB+∂µB+ + β(B+)2

+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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LLF = − 1
2α

(nµAµ)2 + a2

2α
(nµ∂λAµ)(nν∂

λAν) , (52)

where α stands for a free gauge parameter. In ordinary elec-
trodynamics the axial gauge fixing term contains only the
first part of Eq. (52). The second part constitutes the natural
generalization for BP’s electrodynamics. According to the
nature of the directional vector nµ we have different types
of axial gauges. Namely temporal axial, light-front axial and
space or proper axial for respectively timelike, lightlike or
spacelike nµ. The differences among them lead to important
subtleties and turn out to be a key point in the canonical quan-
tization when one needs clearly to pick up a time direction
for the Hamiltonian evolution. In our present discussion how-
ever, we limit ourselves to the Lagrangian analysis proposing
Eq. (52) for a general axial gauge. Addition of the space-time
integral of LLF to BP’s action given by Eq. (1) results in the
axial gauge fixed action

SLF =
∫

d4x
{
−1

4
FµνFµν + a2

2
∂νFµν∂ρFµρ

− 1
2α

(nµAµ)2 + a2

2α
(nµ∂λAµ)2

}
, (53)

which, after discarding surface integration terms, can be
recast into

SLF = 1
2

∫
d4x Aµ(1 + a2!)

×
[
!ηµν − ∂µ∂ν − 1

α
nµnν

]
Aν . (54)

By performing a Fourier transformation, this action can be
rewritten in momentum space as

SLF = 1
(2π)4

∫
d4k Ãµ(k)Mµν(k) Ãν(−k) (55)

with

Mµν(k) ≡ −(1 − a2k2)(k2ηµν − kµkν + 1
α
nµnν) . (56)

The photon propagator of the BP model in the light-front
gauge is the inverse of Mµν , reading explicitly

Pµν(k) =
−1

k2(1 − a2k2)

×
[
ηµν +

(αk2 + n2)

(n · k)2 kµkν − 1
(n · k) (kµnν + kνnµ)

]
.

(57)

Consistently, for the case a = 0 this result reduces to the
usual photon propagator in the axial gauge [36]. Note that
despite the last term in Eq. (56), a term proportional to nµnν

does not show up in the propagator Pµν . For the light-front
gauge, we have n2 = 0 and by choosing the gauge parameter
α = 0 we get the simpler expression [42–44]

Pµν = −1
k2(1 − a2k2)

[
ηµν − 1

(n · k) (kµnν + kνnµ)
]
. (58)

Similarly to the Lorenz gauge, here we can justify the term
given by Eq. (52) by imposing the gauge condition

(1 + a2!)nµAµ = 0 (59)

in the generating functional by means of the Faddeev-Popov
procedure. In fact, we have here the Faddeev-Popov deter-
minant

(FP = det(1 + a2!)nµ∂µ (60)

which can be exponentiated by means of the introduction of
a pair of anticommuting ghost fields (C, C̄) leading to the
generating functional

Z [ jµ] = N
∫

DAµDCDC̄DB exp
{
i S0

+i
∫

d4x
[
C̄(1 + a2!)nµ∂µC + B(1 + a2!)

nµAµ − a2α

2
∂µB∂µB + αB2

2
− jµAµ

]}
,

(61)

where B is the Nakanishi-Lautrup field. Paralleling the
Lorenz gauge case, here we also have the BRS symmetry

δB Aµ = ∂µC , δBC̄ = −B . (62)

Integration over the Nakanishi-Lautrup field leads to an
effective action in the exponential argument as

Sef f = S0 +
∫

d4x
{
− 1

2α
(nµAµ)2

+ a2

2α
(nµ∂λAµ)(nν∂

λAν)+ C̄(1 + a2!)nµ∂µC
}

(63)

showing clearly the appearance of the proposed term given
by Eq. (52).

In the usual Maxwell case, there is a well-known discus-
sion in the literature regarding the propagator of the gauge
field in the light-front. It has been shown [35] that it is possi-
ble to consider a mixing of the Lorenz and light-front gauge
fixings leading to the three-term photon propagator [34]. In
the following we show that there exists a natural general-
ization of the ideas discussed in Ref. [35] to the current BP
model. Specifically, in order to obtain a three-term propaga-
tor, we define the axial Lorenz (AL) gauge-fixing Lagrangian
density as

LAL = − 1
β
(n · A)(∂ · A)+ a2

β
(nµ∂λAµ)(∂ν∂

λAν) , (64)

where now we denote by β the gauge free parameter. Pro-
ceeding analogously to the previous sections, we integrate
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
2

∫
d4x Aµ

×
[
(1 + a2!)(!ηµν − ∂µ∂ν − 1

β
(nµ∂ν − nν∂µ)

]
Aν .

(65)

By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν +

β2k2 + n2

(n · k)2 − n2k2 kµkν − n · k + iβk2

(n · k)2 − n2k2 kµnν

+ − n · k + iβk2

(n · k)2 − n2k2 kνnµ + k2

(n · k)2 − n2k2 nµnν

]
.

(66)

Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
k2

(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as

Z [ jµ] = N
∫

DAµDC+DC̄+

×DB+DC−DC̄−DB− exp
{
i S0

+i
∫

d4x
[
C̄+(1 + a2!)(! + rnµ∂µ)C+

+B+(1 + a2!)(∂µ + rnµ)Aµ

C̄−(1 + a2!)(! − rnµ∂µ)C−

+B−(1 + a2!)(∂µ − rnµ)Aµ

−a2β∂µB+∂µB+ + β(B+)2

+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
2

∫
d4x Aµ

×
[
(1 + a2!)(!ηµν − ∂µ∂ν − 1

β
(nµ∂ν − nν∂µ)

]
Aν .

(65)

By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν +

β2k2 + n2

(n · k)2 − n2k2 kµkν − n · k + iβk2

(n · k)2 − n2k2 kµnν

+ − n · k + iβk2

(n · k)2 − n2k2 kνnµ + k2

(n · k)2 − n2k2 nµnν

]
.

(66)

Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
k2

(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as

Z [ jµ] = N
∫

DAµDC+DC̄+

×DB+DC−DC̄−DB− exp
{
i S0

+i
∫

d4x
[
C̄+(1 + a2!)(! + rnµ∂µ)C+

+B+(1 + a2!)(∂µ + rnµ)Aµ

C̄−(1 + a2!)(! − rnµ∂µ)C−

+B−(1 + a2!)(∂µ − rnµ)Aµ

−a2β∂µB+∂µB+ + β(B+)2

+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
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∫
d4x Aµ

×
[
(1 + a2!)(!ηµν − ∂µ∂ν − 1

β
(nµ∂ν − nν∂µ)

]
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(65)

By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as
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×
[
ηµν +
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(n · k)2 − n2k2 kµnν

+ − n · k + iβk2
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(66)

Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
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k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
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(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as

Z [ jµ] = N
∫

DAµDC+DC̄+

×DB+DC−DC̄−DB− exp
{
i S0

+i
∫

d4x
[
C̄+(1 + a2!)(! + rnµ∂µ)C+

+B+(1 + a2!)(∂µ + rnµ)Aµ

C̄−(1 + a2!)(! − rnµ∂µ)C−

+B−(1 + a2!)(∂µ − rnµ)Aµ

−a2β∂µB+∂µB+ + β(B+)2

+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
2

∫
d4x Aµ

×
[
(1 + a2!)(!ηµν − ∂µ∂ν − 1

β
(nµ∂ν − nν∂µ)

]
Aν .

(65)

By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν +

β2k2 + n2

(n · k)2 − n2k2 kµkν − n · k + iβk2

(n · k)2 − n2k2 kµnν

+ − n · k + iβk2

(n · k)2 − n2k2 kνnµ + k2

(n · k)2 − n2k2 nµnν

]
.

(66)

Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
k2

(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as
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∫
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{
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+i
∫
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+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
2

∫
d4x Aµ

×
[
(1 + a2!)(!ηµν − ∂µ∂ν − 1

β
(nµ∂ν − nν∂µ)

]
Aν .

(65)

By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν +

β2k2 + n2

(n · k)2 − n2k2 kµkν − n · k + iβk2

(n · k)2 − n2k2 kµnν

+ − n · k + iβk2

(n · k)2 − n2k2 kνnµ + k2

(n · k)2 − n2k2 nµnν

]
.

(66)

Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
k2

(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as
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−a2β∂µB+∂µB+ + β(B+)2

+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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where u(p) denotes a plane wave solution to Dirac’s equation
and

!̂(p) =
∫

d4k
(2π)4

γ µ(/p − /k − m)γ ν

[(p − k)2 − m2 + iϵ] Pµν(k) (75)

with the photon propagator of the BP model in the Lorenz
gauge given by Eq. (43). In the Feynman-t’Hooft gauge
choice, ξ = 1, and we may write more directly

!̂(p) = −
∫

d4k
(2π)4

γ µ(/p − /k − m)γµ

Dp−k DP
k

(76)

with the notational definitions

Dp−k ≡ [(p − k)2 − m2 + iϵ] , (77)

and

DP
k ≡ k2(1 − a2k2) . (78)

Actually, even for an arbitrary value of ξ , the calcula-
tion of the simpler expression (76) is sufficient to obtain the
full invariant amplitude in Eq. (74) for the original !̂(p)
in Eq. (75). This comes from the fact that the gauge term
originated from Eq. (43) and inserted into Eq. (75), i.e.

(ξ − 1)
kµkν

k2 ,

does not contribute to (74) as can be seen from

γ µ 1

/p − /k − m
γ νkµkνu(p)

=
[
(/p − m) − (/p − /k − m)

] 1

/p − /k − m
/ku(p)

= −/ku(p). (79)

Since the remaining denominator is even in k this term van-
ishes after the momentum integration in Eq. (75). By using
standard gamma matrix properties, Eq. (76) can be further
simplified to

!̂(p) = 2
∫

d4k
(2π)4

[(/p − /k) − 2m]
Dp−k DP

k

. (80)

Next, we split the denominator for the photon propagator
as the sum

1

DP
k

= 1
k2 − 1

k2 − '2 (81)

where ' ≡ 1/a and define further

D'
k ≡ k2 − '2 + iϵ (82)

to obtain the handy relation

!̂(p) = 2
∫

d4k
(2π)4

[
(/p − /k) − 2m

Dp−k D0
k

− (/p − /k) − 2m

Dp−k D'
k

]

.

(83)

Applying this operator into the Dirac equation free plane
wave solution u(p), as necessary for plugging into Eq. (74),
we may use Dirac’s equation to get

!̂(p)u(p) = 2
(
!̂'(p) − !̂0(p)

)
u(p) (84)

with

!̂'(p) ≡
∫

d4k
(2π)4

/k + m

Dp−k D'
k

. (85)

Using the well known Feynman parametrization technique,
we may express the inverse of the product Dp−k D'

k as an
integral over a dummy real variable x and write

!̂'(p) =
∫ 1

0
dx

∫
d4k
(2π)4

/k + m
[
k′2 − M(x, p,')2 + iϵ

]2 (86)

with

k′ ≡ k − xp (87)

and

M(x, p,')2 ≡ (1 − x)'2 + x2 p2 . (88)

After changing the momentum integration variable to k′,
renaming it back to k, and using again Dirac’s equation we
may write

!̂'(p) u(p)

=
∫ 1

0
dx

∫
d4k
(2π)4

m(1 + x)
[
k2 − M(x, p,')2 + iϵ

]2 u(p) . (89)

Subsequently, we consider the dimensional regularization
and define the quantity

!̂
(ϵ)
' (p) = mµ4−D

∫ 1

0
dx

∫
dDk
(2π)D

× 1 + x
[
k2 − M(x, p,')2 + iϵ

]2 , (90)

where D = 4 − 2ϵ denotes a general real dimension, with ϵ

infinitesimal, which reproduces Eq. (90) when multiplied by
u(p) in the limit D → 4.
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Eq. (64) in space-time and add the result to the gauge action
given by Eq. (1). After disregarding surface terms, the total
gauge fixing action now reads

SAL = 1
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×
[
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β
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]
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By inverting the differential operator defined in Eq. (65)
in momentum space as in the previous cases, we obtain the
generalized photon propagator of the BP model in the axial
Lorenz gauge as
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×
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Going back to the particular light-front gauge case where
n2 = 0 and choosing the gauge parameter β = 0 we get

Pµν (k) =
−1

k2(1 − a2k2)

×
[
ηµν − 1

(n · k) (kµnν + kνnµ)+
k2

(n · k)2 nµnν

]

(67)

which is the corresponding three-term generalized photon
propagator in the light-front gauge for the BP model. Our
result here with the three-term propagator is precisely con-
sistent with the result that we obtained using the interpola-
tion between the instant form dynamics and the light-front
dynamics for the electromagnetic gauge field [45] and for
the QED [46]. As discussed in Refs. [45] and [46], the last
term in Eq. (67) is canceled by the instantaneous interaction
in the light-front dynamics so that the two-term gauge prop-
agator given by Eq. (58) provides effectively the same result
for the physical amplitude without involving the instanta-
neous interaction. As usual, the propagator of the BP model
exhibits an additional simple pole at 1/a2. Note further that
the propagator given by Eq. (67) satisfies

kµPµν = nµPµν = 0 , (68)

known as the double transverse property [34] in the Maxwell
case.

Curiously enough, the gauge-fixing term given by Eq. (64)
can be justified by imposing the two gauge conditions given
by Eqs. (44) and (59) simultaneously. In fact, for arbitrary r ,

those two conditions together imply

0 = (1 + a2!)(∂µ + rnµ)Aµ , (69)

and

0 = (1 + a2!)(∂µ − rnµ)Aµ , (70)

from which we can write the generating functional as

Z [ jµ] = N
∫

DAµDC+DC̄+

×DB+DC−DC̄−DB− exp
{
i S0

+i
∫

d4x
[
C̄+(1 + a2!)(! + rnµ∂µ)C+

+B+(1 + a2!)(∂µ + rnµ)Aµ

C̄−(1 + a2!)(! − rnµ∂µ)C−

+B−(1 + a2!)(∂µ − rnµ)Aµ

−a2β∂µB+∂µB+ + β(B+)2

+a2β∂µB−∂µB− − β(B−)2 − jµAµ

]}
, (71)

where B+ and B− denote the two Nakanishi-Lautrup
fields responsible for implementing the conditions given by
Eqs. (44) and (59) while (C+, C̄+) and (C−, C̄−) are the
corresponding pairs of ghost-antighost fields which come
from the exponentiation of the Faddeev-Popov determinant.
Finally, functionally integrating over B+ and B−, we get the
effective action

Sef f = S0 +
∫

d4x
{
LAL + C̄+(1 + a2!)(! + rnµ∂µ)C+

(72)

+ C̄−(1 + a2!)(! − rnµ∂µ)C−
}

(73)

justifying the gauge-fixing term LAL in Eq. (64) (for the case
r = 1).

4 Application – the electron self-energy

In this section, we discuss the second-order correction to the
electron self-energy considering the propagator of the BP
model for the photon. We specifically calculate the invariant
amplitude for the Feynman diagram represented in Fig. 2
which has one loop integration in the internal momentum k.
This effectively illustrates how BP formulation parallels with
the PV regularization.

The invariant amplitude for the diagram in Fig. 2 is given
by

M = ū(p)%̂(p)u(p) , (74)
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where u(p) denotes a plane wave solution to Dirac’s equation
and
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γ µ(/p − /k − m)γ ν

[(p − k)2 − m2 + iϵ] Pµν(k) (75)

with the photon propagator of the BP model in the Lorenz
gauge given by Eq. (43). In the Feynman-t’Hooft gauge
choice, ξ = 1, and we may write more directly

!̂(p) = −
∫

d4k
(2π)4
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and

DP
k ≡ k2(1 − a2k2) . (78)

Actually, even for an arbitrary value of ξ , the calcula-
tion of the simpler expression (76) is sufficient to obtain the
full invariant amplitude in Eq. (74) for the original !̂(p)
in Eq. (75). This comes from the fact that the gauge term
originated from Eq. (43) and inserted into Eq. (75), i.e.

(ξ − 1)
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does not contribute to (74) as can be seen from
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=
[
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] 1
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/ku(p)

= −/ku(p). (79)

Since the remaining denominator is even in k this term van-
ishes after the momentum integration in Eq. (75). By using
standard gamma matrix properties, Eq. (76) can be further
simplified to
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as the sum
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= 1
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where ' ≡ 1/a and define further

D'
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[
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Applying this operator into the Dirac equation free plane
wave solution u(p), as necessary for plugging into Eq. (74),
we may use Dirac’s equation to get

!̂(p)u(p) = 2
(
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)
u(p) (84)

with
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∫
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(2π)4
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Using the well known Feynman parametrization technique,
we may express the inverse of the product Dp−k D'

k as an
integral over a dummy real variable x and write

!̂'(p) =
∫ 1

0
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∫
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[
k′2 − M(x, p,')2 + iϵ

]2 (86)

with

k′ ≡ k − xp (87)

and

M(x, p,')2 ≡ (1 − x)'2 + x2 p2 . (88)

After changing the momentum integration variable to k′,
renaming it back to k, and using again Dirac’s equation we
may write

!̂'(p) u(p)

=
∫ 1

0
dx

∫
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(2π)4

m(1 + x)
[
k2 − M(x, p,')2 + iϵ

]2 u(p) . (89)

Subsequently, we consider the dimensional regularization
and define the quantity
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∫ 1

0
dx
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dDk
(2π)D

× 1 + x
[
k2 − M(x, p,')2 + iϵ
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where D = 4 − 2ϵ denotes a general real dimension, with ϵ

infinitesimal, which reproduces Eq. (90) when multiplied by
u(p) in the limit D → 4.
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Now, from

µ4−D
∫

dDk
(2π)D

1
(k2 − M2)2 = i

16π2

(
4πµ

M2

)ϵ

#(ϵ)

= i
16π2

[
1
ϵ

− γ + log
4πµ2

M2 + o(ϵ)
]
, (91)

we get

%̂
(ϵ)
& (p) = i

16π2

∫ 1

0
dx(1 − x)

×
[

1
ϵ

− γ + log
4πµ2

(1 − x)&2 + x2m2

]
+ o(ϵ).

(92)

This result diverges for ϵ → 0, but now we may come
back to Eq. (84), where the divergent parts for %̂& and %̂0
cancel, to get the finite result given by

%̂(p) = im
8π2

∫
dx(1 + x) log

x2m2

x2m2 + (1 − x)&2 . (93)

Naturally, the invariant amplitude given by Eq. (74) must
be gauge independent. Instead of Eq. (43), even if one uses
Eq. (58) for the light-front gauge photon propagator, the same
result must be achieved. Indeed, it is easy to show that the
second term in Eq. (58) does not contribute. Consider the
identity

γ µ 1

/p − /k − m
γ ν

[
kµnν + kνnµ

k · n

]

=
[
/k

1

/p − /k − m
/n + /n

1

/p − /k − m
/k
]

1
n · k . (94)

Multiplying by ū(p) from the left and u(p) on the right, as
demanded by Eq. (74), and using once more Dirac’s equation
the identity given by Eq. (94) leads to

ū(p)
{[

(/p − m) − (/p − /k − m)
] 1

/p − /k − m
/n

+/n
1

/p − /k − m

[
(/p − m) − (/p − /k − m)

]}

× 1
n · k u(p) = −2ū(p)

/n
n · k u(p) (95)

which, being odd in k, amounts to zero after momentum inte-
gration. Even if we use the three-term propagator given by
Eq. (67), the last term in Eq. (67) is canceled by the instan-
taneous interaction in the light-front dynamics [45,46] and
thus the result is identical to Eq. (93). It shows the gauge
independence of the invariant amplitude given by Eq. (74)
and illustrates how BP formulation parallels with the PV
regularization.

However, we note that the BP parameter a = 1/& is not
a physically measurable quantity but corresponds to the UV

cutoff parameter which is combined with another unmea-
surable quantity, i.e., the bare mass, to yield the physically
measurable renormalized mass of the electron. The necessity
of mass renormalization already occurs in classical electro-
dynamics as discussed in Sect. 1 and Sect. 2. For a classical
electron of radius re, the electromagnetic mass e2

8πre
becomes

infinite as re → 0. Although this divergence is also true in
QED, its degree of divergence is logarithmic with the UV cut-
off parameter & as shown in Eq. (93) in contrast to the linear
divergence of the classical self-energy correction as re → 0.
This weakening of the divergence in QED is a consequence
of the non-trivial Dirac vacuum in cooperation with the UV
cutoff parameter on par with the BP mass parameter.

5 Conclusion and discussion

In this work, we demonstrated that the BP model solution
for a point charge in classical electrodynamics corresponds
to an ordinary classical electrodynamic solution for a spe-
cific charge distribution given by Eq. (23). Motivated by this
possible reinterpretation of BP model solution in classical
electrodynamics, we further elucidate the BP model as a nat-
ural way of providing Pauli–Villars regularization in ordinary
QED. We note that the weakening of the divergence in QED
as logarithmic, in contrast to the classical linear divergence,
is a consequence of the non-trivial Dirac vacuum in cooper-
ation with the UV cutoff parameter which is combined with
another unmeasurable quantity, i.e., the bare mass, to yield
the physically measurable renormalized mass of the electron.
The BP parameter corresponding to the UV cutoff parameter
is thus as unmeasurable as the bare mass but essential to reg-
ulate the loop divergence in QED and renormalize the mass
of the electron as the physically measurable quantity.

We have pursued the gauge fixing of BP’s generalized
electromagnetism in three distinct ways. Specifically, we
analyzed the standard Lorenz, axial and light-front gauge
fixings. For all considered cases, we have achieved a clean
and neat generalized photon propagator depending on two
parameters, namely the free gauge parameter and BP’s length
dimensional parameter. As a general result, we have shown
the propagator of the BP model can have the same structure
of the usual Maxwell case with only an additional pole at
k2 = 1/a2. Note that the common multiplicative factor in
the propagator can be split as

1
k2(1 − a2k2)

= 1
k2 − 1

k2 − (1/a)2 . (96)

This common multiplicative factor independent of the gauge
choice indicates the unique correspondence between the BP’s
length dimensional parameter a and the UV cutoff parameter
& in the scheme of PV regularization, i.e., a = 1/&. We
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=
[
/k

1

/p − /k − m
/n + /n

1

/p − /k − m
/k
]

1
n · k . (94)

Multiplying by ū(p) from the left and u(p) on the right, as
demanded by Eq. (74), and using once more Dirac’s equation
the identity given by Eq. (94) leads to

ū(p)
{[

(/p − m) − (/p − /k − m)
] 1

/p − /k − m
/n

+/n
1

/p − /k − m

[
(/p − m) − (/p − /k − m)

]}

× 1
n · k u(p) = −2ū(p)

/n
n · k u(p) (95)

which, being odd in k, amounts to zero after momentum inte-
gration. Even if we use the three-term propagator given by
Eq. (67), the last term in Eq. (67) is canceled by the instan-
taneous interaction in the light-front dynamics [45,46] and
thus the result is identical to Eq. (93). It shows the gauge
independence of the invariant amplitude given by Eq. (74)
and illustrates how BP formulation parallels with the PV
regularization.

However, we note that the BP parameter a = 1/& is not
a physically measurable quantity but corresponds to the UV

cutoff parameter which is combined with another unmea-
surable quantity, i.e., the bare mass, to yield the physically
measurable renormalized mass of the electron. The necessity
of mass renormalization already occurs in classical electro-
dynamics as discussed in Sect. 1 and Sect. 2. For a classical
electron of radius re, the electromagnetic mass e2

8πre
becomes

infinite as re → 0. Although this divergence is also true in
QED, its degree of divergence is logarithmic with the UV cut-
off parameter & as shown in Eq. (93) in contrast to the linear
divergence of the classical self-energy correction as re → 0.
This weakening of the divergence in QED is a consequence
of the non-trivial Dirac vacuum in cooperation with the UV
cutoff parameter on par with the BP mass parameter.

5 Conclusion and discussion

In this work, we demonstrated that the BP model solution
for a point charge in classical electrodynamics corresponds
to an ordinary classical electrodynamic solution for a spe-
cific charge distribution given by Eq. (23). Motivated by this
possible reinterpretation of BP model solution in classical
electrodynamics, we further elucidate the BP model as a nat-
ural way of providing Pauli–Villars regularization in ordinary
QED. We note that the weakening of the divergence in QED
as logarithmic, in contrast to the classical linear divergence,
is a consequence of the non-trivial Dirac vacuum in cooper-
ation with the UV cutoff parameter which is combined with
another unmeasurable quantity, i.e., the bare mass, to yield
the physically measurable renormalized mass of the electron.
The BP parameter corresponding to the UV cutoff parameter
is thus as unmeasurable as the bare mass but essential to reg-
ulate the loop divergence in QED and renormalize the mass
of the electron as the physically measurable quantity.

We have pursued the gauge fixing of BP’s generalized
electromagnetism in three distinct ways. Specifically, we
analyzed the standard Lorenz, axial and light-front gauge
fixings. For all considered cases, we have achieved a clean
and neat generalized photon propagator depending on two
parameters, namely the free gauge parameter and BP’s length
dimensional parameter. As a general result, we have shown
the propagator of the BP model can have the same structure
of the usual Maxwell case with only an additional pole at
k2 = 1/a2. Note that the common multiplicative factor in
the propagator can be split as

1
k2(1 − a2k2)

= 1
k2 − 1

k2 − (1/a)2 . (96)

This common multiplicative factor independent of the gauge
choice indicates the unique correspondence between the BP’s
length dimensional parameter a and the UV cutoff parameter
& in the scheme of PV regularization, i.e., a = 1/&. We
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16π2
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ϵ
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, (91)
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& (p) = i

16π2
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ū(p)
{[

(/p − m) − (/p − /k − m)
] 1

/p − /k − m
/n

+/n
1

/p − /k − m

[
(/p − m) − (/p − /k − m)

]}

× 1
n · k u(p) = −2ū(p)
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fixings. For all considered cases, we have achieved a clean
and neat generalized photon propagator depending on two
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of the usual Maxwell case with only an additional pole at
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CP-Even Electromagnetic Form 
Factors of W± Gauge Bosons 
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Vector Anomaly  
in Fermion Triangle Loop 

“Sidewise” channel                                   “Direct” channel 
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Vector Anomaly Revisited 
Smearing of charge (SMR) 

Pauli-Villars Regulation (PV1, PV2) 

Dimensional Regularization (DR4,DR2) 
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Manifestly Covariant Results 
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LFD Results 
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LFD Results for Other 
Regularizations 
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•  This work demonstrated that the BP model solution  
for a point charge in classical electrodynamics corresponds  
to an ordinary classical electrodynamic solution  
for a specific charge distribution.  
•  We further elucidate the BP model as a natural way of  
providing Pauli–Villars regularization in ordinary QED.  
•  We note that the weakening of the divergence in QED as 
logarithmic, in contrast to the classical linear divergence, 
is a consequence of the non-trivial Dirac vacuum in cooperation  
with the UV cutoff parameter which is combined with another  
unmeasurable quantity, i.e., the bare mass, to yield the physically  
measurable renormalized mass of the electron. 
•  The BP parameter corresponding to the UV cutoff parameter is  
thus as unmeasurable as the bare mass but essential to regulate  
the loop divergence in QED and renormalize the mass of the  
electron as the physically measurable quantity.  

Conclusion 


