
Threshold Resummation in 
Drell-Yan with Applications to 

Pion PDFs
Patrick Barry

Group Meeting 5/15/2020



Outline

1. Introduction and Motivation
2. Resummation Formalism
3. Minimal Prescription
4. Borel Prescription
5. Preliminary Results
6. Future Work and Summary



Introduction/Motivation



Motivation
•QCD allows us to study the structure of protons
in terms of partons (quarks, antiquarks, and 
gluons)
•Use factorization theorems to separate hard 
partonic physics out of soft, non-perturbative 
objects to quantify structure
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Motivation
What to do:
•Define a structure of nucleons in terms of quantum 

field theories
• Identify theoretical observables that factorize into 

non-perturbative objects and perturbatively 
calculable physics
•Perform global QCD analysis as structures are 

universal and are the same in all subprocesses
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Pions
•Pion is the Goldstone boson 

associated with chiral symmetry 
breaking
• Lightest hadron as !!

""
≪ 1 and 

dictates the nature of hadronic 
interactions at low energies
•Simultaneously a 𝑞$𝑞 bound state
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Theoretical Interest
•Behavior of PDF as 𝑥! → 1 (v!~ 1 − 𝑥! "#) can 
be related to momentum dependence of 
underlying interaction
•Perturbative QCD predicts that 𝛽 = 1
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Theoretical Interest
•Recent lattice calculations as well as 
phenomenologically determined valence quark 
PDFs using threshold resummation indicate    
𝛽 = 1 as opposed to fixed order (𝛽 = 1/2)
•Our analysis with threshold resummation will 
have impact on this question
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Previous Pion Fits
•Most recent (M. Aicher, 
et al, 2010) pion fit to DY 
data
•Fit uses soft gluon 
resummation
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Comparison - Pion PDFs

PDF using soft gluon 
resummation

PDF using only fixed-
order pQCD (JAM18) 10



Uncertainty
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• Note uncertainty band on 
PDFs are strictly from the 
data errors and 
parameterization bias
• No theoretical uncertainty 

shown (more on this later)



Drell-Yan (DY) Definitions
Hadronic variable
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Partonic variable
!𝑆 is the center of 

mass momentum 
squared of 

incoming partons



Fixed Order Up to NLO
Feynman diagrams for 
DY amplitudes in 
collinear factorization
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LO
LO: 𝒪(1)

•𝑧 = 1 corresponds 
to partonic 
threshold
•All ,𝑆 is equal to 𝑄"

•All energy of hard 
partons turns into 
virtuality of photon
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NLO Virtual 𝑞
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NLO: 𝒪(𝛼!)

Virtual 
Corrections

•Virtual corrections at 
NLO are proportional to 
𝛿 1 − 𝑧
• Exhibit Born kinematics
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NLO Real Emission
Re
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•Next to leading order, real gluon emissions
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NLO Real Emission
•Plus distributions come from subtraction 
procedure of collinear singularities
•When 𝑧 → 1, log(1 − 𝑧) can be large and 
potentially spoil perturbation
•Appear in all orders in a predictable manner
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K-factor
• Four different 

prescriptions and 
handling of the 
cosine vs 
expansion
• See large deviation 

at large 𝑥!
• Could put a 

theoretical 
uncertainty on the 
pion PDFs



Resummation Formalism



Soft Gluon Resummation

• These are Real Emitted Gluons from a quark line
• Can perturbatively calculate these emissions to all orders of 𝛼!
• Here, 𝑧" near 1

20



Setting it up

• Because of the Eikonal approximation, in the soft limit, matrix 
elements of large numbers of emitted gluons can be factorized as 
such:

• Even though the amplitudes factorize in 𝑧-space in that way, the 
phase space does not because of the presence of a delta function for 
conservation of momentum



Setting it up

• In Mellin space, however, we do have factorization of the phase space,

• So for hard kernels, we have something as: 

• Where 𝐶"#$%& (𝑁) is the hard kernel for one soft gluon emitted from the 
quark line



Exponentiation

• Thus, to sum over all the hard kernels is to exponentiate the emission 
of one soft gluon

• Exponentiation is a key concept in threshold resummation



• A general form for the exponent is

• Where '𝐺 is different for different processes (DIS, DY, etc.)
• Here, 𝛼! takes the argument of 𝑘#$ to encompass all threshold effects 



Examples

• Each for the different processes, a Δ is included for each initial state 
parton (in DY there are 2); a 𝐽 is included for each final state parton
(in DIS there is 1)

• 𝐴, 𝐵 are perturbatively calculable in 𝛼!
• Notice the bounds on the 𝑘#$ integration and the bounds on the 𝑧

integration: would evaluate 𝛼!(𝑘#$ = 0)!! Landau pole



Fixed form of 𝛼!
• To perform the calculation, we can use a fixed form for 𝛼!, such as the 

2-loop form

• Then we can perform the integrations over 𝑘#$ then 𝑧 to get the 
Mellin transforms using various approximations



Form for exponent

• Performing for the case of DY, we have

• Where 1𝑁 = 𝑁𝑒%! and  



Hard Kernel to Calculate

Fixed order Kernel
Already have calculated this at NLO!

New Resummation Kernel
Calculate such as Leading Log, 
or Next-to-Leading Log Matching coefficients

Need to subtract in 
order to avoid double 
counting



Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

Non-Log 
terms

LL NLL … NpLL

LO -- 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -- … --

NLO 𝛼&(non−log) 𝛼& log 𝑁 $ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 … --

NNLO 𝛼&$(non−log) 𝛼& log 𝑁 $ $ (𝛼& log 𝑁 ') … --

… … … … … …
NkLO 𝛼&((non−log) 𝛼& log 𝑁 $ ( 𝛼& log 𝑁 ' ()* … 𝛼& log 𝑁 +,$ ()+

Add the rows and columns. Need to 
make sure only counted once!
- Subtract the matching



The need for prescriptions

• To compare with data, one must Mellin invert so that the formulas 
are in momentum-fraction space and not moment space
• The Mellin inversion of the hard kernel appears order-by-order, but it 

is divergent because of the divergence of 𝛼!
• One can locate the divergences and avoid them (Minimal 

Prescription)
• Or one can manipulate the summation to make it convergent (Borel

prescription)



Minimal Prescription



Minimal Prescription

• In principle, one can just do the Mellin inversion exactly
• However, the ambiguity appears in the Landau pole
• We can locate the Landau and avoid it
• By looking at e.g. the ℎ*(𝜆) term, we can see where the arguments of 

the logarithms go to 0 and become negative
• This location is the Landau pole



Avoiding the Landau Pole

• The minimal 
prescription 
attempts to avoid 
the Landau pole by 
making its Mellin
inversion contour 
away the left of 
the pole and to the 
right of the other 
poles



Rapidity Distribution

• In order to compare with data, we need to compare with the rapidity 
dependent resummed formulas
• Instead of a single Mellin, a Mellin-Fourier transform must be taken



Rapidity Distribution

• Substituting the hadronic rapidity with a partonic rapidity

• We get

• Since 𝐶-.& 𝑧 is even under �̂�, the exponent can be converted to a 
cosine



Rapidity Distribution

• Because in the threshold limit, the hard part has delta functions, the 
�̂� integration can be completed, namely



Cosine vs Expansion

• Since we focus on the threshold region, that is when 𝑧 → 1, the log of 
z will be close to 0, meaning the argument of the cosine will be close 
to 0
• One can expand to the cosine term such that 

• Or, one can take the cosine exactly how it is 



Expansion

• If we have the expansion, then 

• Goes to 

• Note the independence of C on M



Cosine

• If we have the expansion, then 

• Goes to 



PDFs

• Because of the change of 𝜂 → �̂�, the PDFs gather a ±𝑖 /
$

in their 
Mellin moments

• Whether C is dependent on M or not



MELLIN CONTOUR

c°iM/2

iM/2
N

• Here, 𝑐 is to the right of the PDFs’ 
rightmost poles

• Because the PDF moments are 
evaluated at 𝑁 ± 𝑖 %& instead of 
the usual 𝑁, the poles are also 
located ±𝑖 %& from the real axis 
(red and green stars)

• Contour is misshapen to ensure 
poles are encapsulated

𝜙!

𝜙"

𝑁" = 𝑐 − 𝑖
𝑀
2
+ 𝑧" 𝑒#! 𝑁$ = 𝑐 − 𝑖

𝑀
2 + 𝑧$ 𝑖 𝑀

𝑁! = 𝑐 + 𝑖
𝑀
2
+ 𝑧! 𝑒#"

0 < 𝑧" < ∞ 0 < 𝑧$ < 1 0 < 𝑧! < ∞

𝑁"

𝑁$

𝑁!
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Fast Fourier Transform

• An integration technique of the Fast Fourier Transform is needed to 
handle highly oscillatory integrands such as the ones below
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Comparison with Aicher et al.

• To check the code is working, always a good idea to check against 
published results
• Aicher et al. fit pion PDFs and studied 𝜋𝑊 DY
• Take Aicher’s parameters and evaluate the cross sections at the same 

kinematics



Comparison with Aicher
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Borel Prescription



Borel Prescription (BP)

• The Borel Prescription makes use of Borel summation to take care of 
the divergent series in 



Borel Summation

• Takes a divergent series and gives asymptotic value

• For absolutely convergent series, the integral and the sum can be 
interchanged,

• So that the sum over 𝑐' is restored
• Start from the divergent series, multiply each term by 1, and write 1

appropriately with 𝑘 in each term, then exchange the sum and the 
integral

= Γ 1 + 𝑘 = 𝑘!



BP

• It is convenient to write the resumed kernel as

• Which can be re-written as 

• And we can compute the Mellin inversions term by term 
Where 𝐿 = log "

%

And we know that 𝑐& 𝑧 are 
the inverse Mellin transforms 
of the powers of log "

%



BP – ck

• There are many ways to calculate the Mellin inversion of log &
(

'

• Skipping ahead for now, we arrive at 

• So a new variable to be integrated over is introduced based on 

=

Certain poles 
must be 
encircled in the 
contour!



BP continuation

• Here, by exchanging the integral and summation, we arrive at

• We still have divergences here, so now, we can perform the Borel
transformation:

• We have included the integral over 𝑤
• We also notice that the summation can be written in the same way 

as was introduced



BP Comments

• The branch cut (Landau pole) of 𝐶-.& is mapped in terms of 𝜉 to the 
region          −J𝛼𝑤 ≤ 𝜉 ≤ 0, so the contour must enclose this branch 
cut
• However, the 𝑤 integral goes up to ∞
• So the 𝐶-.&(𝑧, 𝛼&) is not actually Borel-summable
• We need to introduce an upper cut-off on the 𝑤 integral, so we get: 



BP Comments

• The divergent series 𝐶-.& 𝑧 is asymptotic to the BP formula

• Does not spoil convolution since formulated at the partonic level
• Based on subleading term arguments, more BP kernels can be 

generated (not in this talk)
• Try to reproduce correct instances of =>? @AB

@AB
and constant terms 

• Also has to do with taking the large-𝑁 approximation when 𝑁 is not always 
large



Preliminary Results



Minimal Prescription

• From fitting E615 experimental data
𝜒$~2/npts, not 
very good

This large of a 
gluon distribution 
at high-𝑥 is 
unphysical



K-factor Pions

• For JAM18 Pion 
PDFs plugged into 
the threshold 
resummed DY 
cross section
• Not much 

difference at large 
𝑥0, especially 
compared with 
the proton



Minimal Prescription

• Momentum fractions for cosine:
• 𝑥 FGH = 0.359, 𝑥 IJG = 0.205, 𝑥 = 0.436



Minimal Prescription

• Momentum fractions for expansion:
• 𝑥 FGH = 0.390, 𝑥 IJG = 0.130, 𝑥 = 0.480



Momentum Fractions

• JAM18 vs resummation fits

Flavor / Determination JAM18 Pion Cosine Expansion

𝑥' ()* 0.54 0.36 0.39

𝑥' +,) 0.16 0.21 0.13

𝑥' - 0.30 0.44 0.48

Stark contrast in valence and gluon momentum fractions!



Future Work and Summary



Next Steps for Minimal Prescription

• Gluon and sea could be frozen from most recent analysis, allowing fit 
to be just for the valence (as was done in Aicher)
• Recall the valence is the main contributor to the DY cross section

• Include LN data as well to constrain the gluon



Future for Minimal Prescription

• Calculation takes a long time, Monte Carlo needs improvement
• Memory taken for the Mellin contours is large
• Sophisticated parallelization of tasks is needed
• Possible AI applications



Next Steps for Borel Prescription

• Need to make sure the NLO+NLL is in line with Bonvini calculations
• Check the plus distribution function

• Construct Mellin tables to speed up Borel calculation
• Integrate the Borel code into the JAM fitting framework
• Perform fits on DY data, perhaps in a similar way to the Minimal 

Prescription



Borel Prescription Tables (Cosine)

• The Borel prescription is best described in 𝑥1-space

• Each line has a convolution form, so we can write it as



Borel Prescription Tables (Cosine)

• Recall that Mellin transforms of convolutions are products of 
individual Mellin transforms
• Line by line, I show

• Line 2 follows similarly



Borel Prescription Tables (Cosine)

• Combining, we write

• For each line, we can construct Mellin tables to be multiplied with the 
pion PDF



Borel Prescription Tables (Cosine)

• The 2nd line table can perform the Mellin inversion

• Doing so, we can calculate the cross section much faster for Monte 
Carlo global fits



Borel Prescription Tables (Expansion)

• For the expansion, we take the cosine to be 1.  In doing so, we have 
the following cross section

• We can replace the pion PDF by the Mellin inversion of its Mellin
transform,



Borel Prescription Tables (Expansion)

• By plugging that back into the cross section, we get

• And we can write our tables as

• Such that the cross section is



Conclusions

• Resummation is important for describing the high-𝑥 behavior of PDFs
• We can have input on the debate on whether the pion PDF’s high 𝑥1

behavior goes as (1 − 𝑥1) or 1 − 𝑥1 $

• Different prescriptions will give some theoretical uncertainties to the 
PDFs
• Single fits for the minimal prescription have been done, but need to 

be improved
• Codes for the Borel prescription are vastly improved, and close to 

being able to perform fits


