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Introduction/Motivation



Motivation

*QCD allows us to study the structure of protons
in terms of partons (quarks, antiquarks, and
gluons)

* Use factorization theorems to separate hard
partonic physics out of soft, non-perturbative
objects to quantify structure



Motivation

What to do:

* Define a structure of nucleons in terms of quantum
field theories

* |dentify theoretical observables that factorize into

non-perturbative objects and perturbatively
calculable physics

* Perform global QCD analysis as structures are
universal and are the same in all subprocesses



Pions

* Pion is the Goldstone boson
associated with chiral symmetry
breaking

* Lightest hadron as ~ « 1 and

dictates the nature of hadronic
interactions at low energies

* Simultaneously a gg bound state



Theoretical Interest

e Behavior of PDFas x,, = 1 (v,,~(1 — x,,)?#) can
be related to momentum dependence of
underlying interaction

* Perturbative QCD predicts that f = 1



Theoretical Interest

* Recent lattice calculations as well as
phenomenologically determined valence quark
PDFs using threshold resummation indicate

B = 1 as opposed to fixed order (8 = 1/2)

* Our analysis with threshold resummation will
have impact on this question



Previous Pion Fits

0.5 T L) L) T I LJ L) L] L) I L) L) L L) I LJ L] T T I LJ T L) L)
- -

1 S — ws 1 *Most recent (M. Aicher,
4 O S 7] . .
=~ @ | etal, 2010) pion fit to DY

0.3 data

ozl *Fit uses soft gluon
resummation

0.1




Comparlson Pion PDFs
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Uncertainty

* Note uncertainty band on
PDFs are strictly from the
data errors and
parameterization bias

* No theoretical uncertainty
shown (more on this later)
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Drell-Yan (DY) Definitions

Hadronic variable

QQ
~ S

T

A Partonic variable
S is the center of
Q* T

mass momentum =2
1T
squared of 5 T
Incoming partons




Real emissions

Fixed Order Up to NLO

7 Feynman diagrams for
LO: O(1) >/\/\< DY amplitudes in
7 . collinear factorization

NLO: 0(“5)

q _
o q
l_
M X Virtual :
I g q : g
q

Corrections

q I~ q g
I~ 14
o g !
l+
q g q ¥ q q
13




z = 1 corresponds
to partonic
threshold

«All S is equal to Q3

* All energy of hard
partons turns into
virtuality of photon



NLO Virtual

*Virtual corrections at
NLO are proportional to
6(1 —2z2)

* Exhibit Born kinematics

NLO: 0(“5)

Corrections

Virtual

1 (y)
virtual
qut =6(1 — 2)
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Real emissions

NLO Real Emission

* Next to leading order, real gluon emissions
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NLO Real Emission

* Plus distributions come from subtraction
procedure of collinear singularities

*When z = 1, log(1 — z) can be large and
potentially spoil perturbation

* Appear in all orders in a predictable manner



K-factor

6 T T T

e Four different

prescriptions and St

handling of the * Q=7.95 GeV
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Resummation Formalism



Soft Gluon Resummation

1 21 2129
1—2 1—2z

)

~1+<2+<3 ~1<2 """ ~n

1 — 23

* These are Real Emitted Gluons from a quark line

* Can perturbatively calculate these emissions to all orders of ag
* Here, z; near 1

20



Setting it up

* Because of the Eikonal approximation, in the soft limit, matrix
elements of large numbers of emitted gluons can be factorized as
such:

n
soft 1

Mu(z1,- o) = — [ [ Ma(=)
=1

* Even though the amplitudes factorize in z-space in that way, the
phase space does not because of the presence of a delta function for
conservation of momentum

5(2 — 2122...Zn).



Setting it up

* In Mellin space, however, we do have factorization of the phase space,

1
/ dzzN"16(2 — 2129...2,) = z{v_lzév_l...zN_l
0

e So for hard kernels, we have something as:

) soft 1 ' n
CON)E =[G )]

n!

* Where Csloft(N) is the hard kernel for one soft gluon emitted from the
quark line



Exponentiation

* Thus, to sum over all the hard kernels is to exponentiate the emission
of one soft gluon

* Exponentiation is a key concept in threshold resummation



* A general form for the exponent is

2
1 — 1 [FTmax dk2
ot = [ a2 / Glos (k). k)

« Where G is different for different processes (DIS, DY, etc.)

* Here, as takes the argument of k4 to encompass all threshold effects



Examples

e Each for the different processes, a A is included for each initial state
parton (in DY there are 2); a J is included for each final state parton
(in DIS there is 1)

ZN_l 1 /(1—2:)2Q2 dk%
m

1
In A,(N) = / dz o Ap(as(k})),
0 2 T

11—z

1 ,N-1_ (1-2)Q* 2
In Jp(N) = /0 dz ! !/( k7 Ap(as(kt)) + Bp(as((l —~ 2)Q2))]

l1—2 1—2)2Q2 k%
* A, B are perturbatively calculable in a;

* Notice the bounds on the k% integration and the bounds on the z
integration: would evaluate ag(k% = 0)!! Landau pole



Fixed form of ag

* To perform the calculation, we can use a fixed form for a¢, such as the
2-loop form

(k2) as (14°) | boos(u?)log (1 + boas (17) log (3)
aS T pr— — - k2
1+ boas(u)log(t2) b Do 14 boas(u?)log (55)

* Then we can perform the integrations over k% then z to get the
Mellin transforms using various approximations



Form for exponent

* Performing for the case of DY, we have

log A(N) = 20 log (N) + 20 (X, Q% /1i?)
e Where N = NeVE and ) =boas(1®) lnN.

AP

RO\ = 2\ + (1 — 2)\) In(1 — 2\
() 27rb0)\[ + ( ) In( )]s
2\ + In(1 — 2X)
2 1 2
h®0\) = (wAg )by — by A >) T
AVp, A Q?

In?(1 — 2\ In(1 —2)\) In =



Hard Kernel to Calculate

p

Oég d] 1I;IeI§LL(N7 Oés)

dodl
New Resummation Kernel \
Calculate such as Leading Log,
Fixed order Kernel or Next-to-Leading Log Matching coefficients
Already have calculated this at NLO! Need to subtract in

order to avoid double
counting




Next-to-Leading + Next-to-Leading Logarithm

Add the rows and columns. Need to

make sure only counted once! O rd er Ca |CU |atIO N

- Subtract the matching

constant

a, log(N)? constant

NNLO aZ(non—log)

NKLO a¥(non—log) (aslog(N)P+2)k-P



The need for prescriptions

* To compare with data, one must Mellin invert so that the formulas
are in momentum-fraction space and not moment space

* The Mellin inversion of the hard kernel appears order-by-order, but it
is divergent because of the divergence of a;

* One can locate the divergences and avoid them (Minimal
Prescription)

* Or one can manipulate the summation to make it convergent (Borel
prescription)



Minimal Prescription



Minimal Prescription

* In principle, one can just do the Mellin inversion exactly
* However, the ambiguity appears in the Landau pole
* We can locate the Landau and avoid it

* By looking at e.g. the h1(1) term, we can see where the arguments of
the logarithms go to O and become negative

* This location is the Landau pole

1-2X2>0 = N <exp(1/2asb)



Avoiding the Landau Pole

* The minimal
prescription N\ N space
attempts to avoid
the Landau pole by
making its Mellin

Inversion contour T Ny
away the left of
the pole and to the
right of the other

poles /




Rapidity Distribution

* In order to compare with data, we need to compare with the rapidity
dependent resummed formulas

* Instead of a single Mellin, a Mellin-Fourier transform must be taken




Rapidity Distribution

* Substituting the hadronic rapidity with a partonic rapidity

A 1
h=1n-=3 log (1 /x2)

* We get ! log1/vz .
g CreS(N’ M) _ / dZZN_1/ dﬁezl\/f’ncreS(z)
0 —logl/+/z

* Since C"®%(z) is even under 7, the exponent can be converted to a
cosine

1 log1//z
C*™(N,M) = / dzz¥ 1 / dij cos(MnH)C*(2)
0 —logl/+/z



Rapidity Distribution

* Because in the threshold limit, the hard part has delta functions, the
1) integration can be completed, namely

, ! M ,
C"™(N,M) = / dzzN 1 COS(E log 2)C"**(2)
0



Cosine vs Expansion

* Since we focus on the threshold region, that is when z = 1, the log of
z will be close to 0, meaning the argument of the cosine will be close
to0

* One can expand to the cosine term such that

M
003(7 logz) ~ 1

* Or, one can take the cosine exactly how it is

M 1 . A
COS(? logz) — 5(e’LJ\TIlogz + e—z%logz)



Expansion

* If we have the expansion, then

! M
C"*(N,M) = / dzzN 1 COS(? log 2)C"*(2)
0
* Goes to

1
CreS(N, ]\4) _ / dZZN—lcreS(Z) — CreS(N)
0

* Note the independence of Con M



Cosine

* If we have the expansion, then

! M
C"*(N,M) = / dzzN 1 cos(? log 2)C"*(2)
0

e Goes to

1
Cres N M dZZ zAI/2+Z—iM/2>}CreS(Z)

|

dZ— (N+iM/2)— 1—|—Z(N tM/2)— l)CI‘eS()

o\o
[\D



PDFs

* Because of the change of n — 1), the PDFs gather a +i % in their
Mellin moments

7(N,M) =00 Y fA(N+iM/2)fy (N —iM/2)C*(N, M)

qq

* Whether Cis dependent on M or not



MELLIN CONTOUR

* Here, c is to the right of the PDFs’
— N rightmost poles

\\ * Because the PDF moments are
iM/2 |

.M .
1 evaluated at N + L~ instead of

the usual N, the poles are also

/ (red and green stars)

. .M .
—iM/2 _ located il; from the real axis
/ . .
e Contour is misshapen to ensure
poles are encapsulated
M M M
N1=C—l?+218¢1 Np=c—io+ziM N3=c+17+zge¢3

0<z < 0<z,<1 0<z3 <



Fast Fourier Transform

* An integration technique of the Fast Fourier Transform is needed to
handle highly oscillatory integrands such as the ones below

0.35

Tp =




Comparison with Aicher et al.

* To check the code is working, always a good idea to check against
published results

* Aicher et al. fit pion PDFs and studied W/ DY

* Take Aicher’s parameters and evaluate the cross sections at the same
kinematics



Comparison with Aicher
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Borel Prescription



Borel Prescription (BP)

* The Borel Prescription makes use of Borel summation to take care of
the divergent series in

CI(S Z O/g E :O/ CI(S



Borel Summation

* Takes a divergent series and gives asymptotic value

Zp’f_/ Juw e _wz('k k

* For absolutely convergent series, the integral and the sum can be
interchanged,

1 > —w , k ‘
y/o dwe wzlf/v=f‘(1+k):k

* So that the sum over ¢y, is restored

 Start from the divergent series, multiply each term by 1, and write 1
appropriately with k in each term, then exchange the sum and the
integral



BP

e |t is convenient to write the resumed kernel as

1
Cl(,h(N’ (Y,g) — <(_y log N,Ozs)

 Which can be re-written as

Y(aL, ay) th Q)

k=0 | Where L = log (%)
* And we can compute the Mellin inversions term by term

- _ _ 1 And we know that ¢, (2) are
res _ 1 - k
CP(z,a5) =M {Z (ozlog N’ as>] (2) the inverse Mellin transforms

= hy(as) @ ei(2)

of the powers of log (%)



BP_Ck

k
. . M 1
* There are many ways to calculate the Mellin inversion of log (ﬁ)

en(z) =M [log* | ()

» Skipping ahead for now, we arrive at

Certain poles

1 ! de [ [logt™' 1] must be
a1 k _ 2.+
ck(z) =M [log N] (2) = Qi ]{ ght1 ( NG +0(1 — 2) encircled in the
contour!

* So a new variable to be integrated over is introduced based on

( d logt! L ) . k! (7{ d¢ logt! %)
dek T 9 k+1
dgt T() |, . 271 il T(€) N




BP continuation

* Here, by exchanging the integral and summation, we arrive at

E-11

OS2, ) = %]{ d; ([logr(g)z} 5(1— - ) th . (g)kk!

* We still have divergences here, so now, we can perform the Borel
transformation:

k=0

* We have included the integral over w

* We also notice that the summation can be written in the same way
as was introduced i
, aw
E(?ﬂﬁ



BP Comments

* The branch cut (Landau pole) of C"®° is mapped in terms of £ to the
region —aw < & < 0, so the contour must enclose this branch
cut

* However, the w integral goes up to o
* So the C"%°(z, a;) is not actually Borel-summable
* We need to introduce an upper cut-off on the w integral, so we get:

§-11

1 d§ [log } Wdw _w w
CBP z, o5, W :—_j{ ‘ 2t 51— 2 / —e a x| —, g
(500 W)= 50 5( re U )G 3




BP Comments

* The divergent series C"¢5(z) is asymptotic to the BP formula

. E—11 W
1 d& [10% } dw _w w
(0, W) 2mi ) & ( I'(€) ( ) 0 §

* Does not spoil convolution since formulated at the partonic level

* Based on subleading term arguments, more BP kernels can be
generated (not in this talk)

) log(1—-2z
* Try to reproduce correct instances of g1(—z ) and constant terms

* Also has to do with taking the large-N approximation when N is not always
large



Preliminary Results



Minimal Prescription

* From fitting E615 experimental data

Q% =QZ =m? x2~2/npts, not
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K-factor Pions

* For JAM18 Pion
PDFs plugged into
the threshold
resummed DY
Cross section

* Not much
difference at large
X, especially
compared with
the proton

K-factor; Q =8GeV,S =500

4 — NLO
njAMlSW_)H U X -—- MPcos |
----- MP expan |
@)
— I
< /L
o) 4
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o &
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XF



Minimal Prescri
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Minimal Prescri
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Momentum Fractions

e JAM18 vs resummation fits

Flavor / Determination | JAM18 Pion

(XY pal 0.54 0.39
(%) seq 0.16 0.21 0.13
(%) g 0.30 0.44 0.48

Stark contrast in valence and gluon momentum fractions!



Future Work and Summary



Next Steps for Minimal Prescription

* Gluon and sea could be frozen from most recent analysis, allowing fit
to be just for the valence (as was done in Aicher)

e Recall the valence is the main contributor to the DY cross section

* Include LN data as well to constrain the gluon



Future for Minimal Prescription

* Calculation takes a long time, Monte Carlo needs improvement
 Memory taken for the Mellin contours is large
e Sophisticated parallelization of tasks is needed

* Possible Al applications



Next Steps for Borel Prescription

* Need to make sure the NLO+NLL is in line with Bonvini calculations
* Check the plus distribution function

* Construct Mellin tables to speed up Borel calculation
* Integrate the Borel code into the JAM fitting framework

* Perform fits on DY data, perhaps in a similar way to the Minimal
Prescription



Borel Prescription Tables (Cosine)

* The Borel prescription is best described in x-space

1 d BP d
iy = 3 4L, TR U 64 QI (@)

d
b [ @l e @0 (200

e Each line has a convolution form, so we can write it as

1 doBP

1 1
00 dQQdY _Z L d§/0 dxlfz(xva2)f (5627@ )Cfge}g(f Q ) ( —51315)

1 1
+ [ de [ dnafiad Q)Y (na @)CE(E @38 — 226)].
0 0



Borel Prescription Tables (Cosine)

* Recall that Mellin transforms of convolutions are products of
individual Mellin transforms

* Line by line, | show
Ull?ri 1= ;Zegfév(xg,Qz)/o dxl(xl)N 1/ df/ dz1fa(z1, QQ)CreS(f Q*)0 ($1_331§)

ada

1
OB = 2572 (19, ) / NS (6, Q) /0 dz 21§ (21, Q)

2
qaq

1 ,
= 5 A (5, QYCER (N, QD AN, Q).
qq

* Line 2 follows similarly



Borel Prescription Tables (Cosine)

e Combining, we write

1 doPBP :1262 [fW(a:O QQ)L/ dN(:UO)_NC'reS(N QQ)JM(N QQ)
0o dQQdY 2 = 1’8 > 271 Cn 1 o | ! |

30 Q) [ M@ MO (M. QA (M. Q).

271

* For each line, we can construct Mellin tables to be multiplied with the

pion PDF |
Th(N) = 563(%9)‘Nf'1‘§v(x3,QQ)CEQS(N, Q?)

1 doBPt 1
0o dQ2dY <= 2mi Jo

qq

dN f3(N,Q*)T1(N)



Borel Prescription Tables (Cosine)

* The 2" [ine table can perform the Mellin inversion

1

T =5 [ M) M CE(M.Q) 1Y (M. Q?)
Cwm

1 dO'BP2

— T Oq 2 T
o0 dQQdY ZfA(xl/Q ) 2
qq

* Doing so, we can calculate the cross section much faster for Monte
Carlo global fits



Borel Prescription Tables (Expansion)

* For the expansion, we take the cosine to be 1. In doing so, we have
the following cross section

0

1 dJBP 1 |
oo dQ2dY - Z/ _fA( :131 Q) B (%,Q%Cﬁ?(z,@%,
aq

* We can replace the pion PDF by the Mellin inversion of its Mellin
transform,

1

27Tz

i@, Q%) = / ANz fT(N, Q).
CnN



Borel Prescription Tables (Expansion)

* By plugging that back into the cross section, we get

1 do®” ! W, TS o 2
o0 dQ2dY Z /W[ . 2m/ (7) NIAN, Q)] fr (ﬁaQ )Cpp (2, Q7).

e And we can write our tables as

vy =d [ b L e e
’ - re2lY| 2 \/Z b \/z, .

e Such that the cross section is

1 doP¥ 1
00 dQ2dY 27 Jo

qq

dN (N, Q*)T(N, Q).



Conclusions

 Resummation is important for describing the high-x behavior of PDFs

* We can have input on the debate on whether the pion PDF’s high x;
behavior goes as (1 — x,;) or (1 — x,;)*

* Different prescriptions will give some theoretical uncertainties to the
PDFs

* Single fits for the minimal prescription have been done, but need to
be improved

* Codes for the Borel prescription are vastly improved, and close to
being able to perform fits



