Soft Gluon Resummation Updates and Pion PDFs

Patrick Barry

Group Meeting 7/31/2020

Outline

- Motivation
- How to compute resummation expressions
- Minimal Prescription
- Monte Carlo PDF results
- "Exact" Resummation with Double Mellin

Introduction/Motivation

Motivation

- QCD allows us to study the structure of protons in terms of partons (quarks, antiquarks, and gluons)
- Use factorization theorems to separate hard partonic physics out of soft, non-perturbative objects to quantify structure

Motivation

What to do:

- Define a structure of nucleons in terms of quantum field theories
- Identify theoretical observables that factorize into non-perturbative objects and perturbatively calculable physics
- Perform global QCD analysis as structures are universal and are the same in all subprocesses

Pions

- Pion is the Goldstone boson associated with chiral symmetry breaking
- Lightest hadron as $\frac{m_{\pi}}{M_N} \ll 1$ and dictates the nature of hadronic interactions at low energies
- Simultaneously a $q \overline{q}$ bound state

Theoretical Interest

- Behavior of PDF as $x_{\pi} \rightarrow 1$ ($v_{\pi} \sim (1 x_{\pi})^{2\beta}$) can be related to momentum dependence of underlying interaction
- Perturbative QCD predicts that $\beta = 1$

Theoretical Interest

- Recent lattice calculations as well as phenomenologically determined valence quark PDFs using threshold resummation indicate $\beta = 1$ as opposed to fixed order ($\beta = 1/2$)
- Our analysis with threshold resummation will have impact on this question

Previous Pion Fits

- Most recent (M. Aicher, et al, 2010) pion fit to DY data
- Fit uses soft gluon resummation

Comparison - Pion PDFs

Uncertainty

- Note uncertainty band on PDFs are strictly from the data errors and parameterization bias
- No theoretical uncertainty shown (more on this later)

Drell-Yan (DY) Definitions

Hadronic variable

$$\tau = \frac{Q^2}{S}$$

 \hat{S} is the center of mass momentum squared of incoming partons

Partonic variable
$$z\equiv rac{Q^2}{\hat{S}}=rac{ au}{x_1x_2}$$

Fixed Order Up to NLO Feynman diagrams for LO: $\mathcal{O}(1)$ DY amplitudes in collinear factorization NLO: $\mathcal{O}(\alpha_S)$ Real emissions Virtual Corrections \boldsymbol{q}

LO

LO:
$$\mathcal{O}(1)$$
 $q \rightarrow q \rightarrow l^{-}$ l^{+}

$$C_{q\bar{q}} = \delta(1-z)\frac{\delta(y) + \delta(1-y)}{2}$$

- z = 1 corresponds
 to partonic
 threshold
- All \hat{S} is equal to Q^2
- All energy of hard partons turns into virtuality of photon

NLO Virtual

- Virtual corrections at NLO are proportional to $\delta(1-z)$
 - Exhibit Born kinematics

$$C_{q\bar{q}}^{\text{virtual}} = \delta(1-z)\frac{\delta(y) + \delta(1-y)}{2} \left[\frac{C_F \alpha_S}{\pi} \left(\frac{3}{2}\ln\frac{Q^2}{\mu^2} + \frac{2\pi^2}{3} - 6\right)\right]$$

NLO Real Emission

Next to leading order, real gluon emissions

NLO Real Emission

- Plus distributions come from subtraction procedure of collinear singularities
- When $z \rightarrow 1$, $\log(1 z)$ can be large and potentially spoil perturbation
 - Appear in all orders in a predictable manner

K-factor

- Different
 prescriptions
 show different
 results, especially
 at large x_F
- Could put a theoretical uncertainty on the pion PDFs

Computing Resummation Expressions

Soft Gluon Resummation

- These are Real Emitted Gluons from a quark line
- Can perturbatively calculate these emissions to all orders of α_S
- Here, z_i near 1

Setting it up

 Because of the Eikonal approximation, in the soft limit, matrix elements of large numbers of emitted gluons can be factorized as such:

$$\mathcal{M}_n(z_1,\ldots,z_n) \stackrel{\text{soft}}{\simeq} \frac{1}{n!} \prod_{i=1}^n \mathcal{M}_1(z_i)$$

• Even though the amplitudes factorize in *z*-space in that way, the phase space does not because of the presence of a delta function for conservation of momentum

$$\delta(z-z_1z_2...z_n).$$

Setting it up

• In Mellin space, however, we do have factorization of the phase space,

$$\int_0^1 dz z^{N-1} \delta(z - z_1 z_2 \dots z_n) = z_1^{N-1} z_2^{N-1} \dots z_n^{N-1}$$

• So for hard kernels, for each order of α_S , we have:

$$C^{(n)}(N) \stackrel{\text{soft}}{\simeq} \frac{1}{n!} \left[C^{(1)}_{\text{soft}}(N) \right]^n$$

• Where $C_{soft}^1(N)$ is the hard kernel for one soft gluon emitted from the quark line

Exponentiation

• Thus, to sum over all the hard kernels is to exponentiate the emission of one soft gluon

$$\sum_{n=1}^{\infty} C^{(n)}(N) = \sum_{n} \frac{1}{n!} [C_{\text{soft}}^{(1)}(N)]^n$$
$$= \exp\left(C_{\text{soft}}^{(1)}(N)\right)$$

• Exponentiation is a key concept in threshold resummation

Computing the Expressions

• Specifically for the DY case, we need to use the following for each initial state parton (2 for DY)

$$\log \Delta(N) = \int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \int_{\mu^2}^{(1-z)^2 Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} A_q(\alpha_S(k_{\perp}))$$

where

$$A_q(\alpha_S) = \sum_{i=1}^{\infty} \alpha_S^i A_q^{(i)}$$

and

$$A_q^{(1)} = \frac{C_F}{\pi}, \qquad A_q^{(2)} = \frac{C_F}{2\pi^2} \Big[C_A \Big(\frac{67}{18} - \frac{\pi^2}{6} \Big) - \frac{5}{9} N_f \Big].$$

Computing the Expressions

• We also need a closed form for α_S , in which case, we use the twoloop (needed for up to NLL accuracy)

$$\alpha_S(k_T^2) = \frac{\alpha_S(\mu^2)}{1 + b_0 \alpha_S(\mu^2) \log(\frac{k_T^2}{\mu^2})} \Big[1 - \frac{b_1}{b_0} \frac{\alpha_S(\mu^2) \log(1 + b_0 \alpha_S(\mu^2) \log(\frac{k_T^2}{\mu^2})}{1 + b_0 \alpha_S(\mu^2) \log(\frac{k_T^2}{\mu^2})} \Big]$$

Computing the Expressions

• Plugging those in, we get the following

$$\begin{split} \log \Delta(N) &= \int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \int_{\mu^2}^{(1 - z)^2 Q^2} \frac{dk_\perp^2}{k_\perp^2} \Biggl\{ A_q^{(1)} \frac{\alpha_S(\mu^2)}{1 + b_0 \alpha_S(\mu^2) \log \frac{k_\perp^2}{\mu^2}} \\ & \times \Bigl[\frac{b_1}{b_0} \frac{\alpha_S(\mu^2) \log(1 + b_0 \alpha_S \log \frac{k_\perp^2}{\mu^2})}{1 + b_0 \alpha_S(\mu^2) \log \frac{k_\perp^2}{\mu^2}} \Bigr] \\ & + A_q^{(2)} \Bigl(\frac{\alpha_S(\mu^2)}{1 + b_0 \alpha_S(\mu^2) \log \frac{k_\perp^2}{\mu^2}} \Bigl[\frac{b_1}{b_0} \frac{\alpha_S(\mu^2) \log(1 + b_0 \alpha_S \log \frac{k_\perp^2}{\mu^2})}{1 + b_0 \alpha_S(\mu^2) \log \frac{k_\perp^2}{\mu^2}} \Bigr] \Bigr)^2 \Biggr\}. \end{split}$$

Large N Approximation

- The z integral on the previous slide is difficult, but not impossible
- Recall, our aim is the soft limit, *i.e.* when $z \rightarrow 1$
- In Mellin space, soft limit is $N \to \infty$
- In the large N limit, we may use the approximation

$$z^{N-1} - 1 \approx -\Theta(1 - \frac{1}{\bar{N}} - z)$$

where

$$\bar{N} = N e^{\gamma_E}$$

Plugging it in

• We can use the large N approximation to compute the following

$$\begin{split} \log \Delta(N) &= -\int_{0}^{1-\frac{1}{N}} \frac{dz}{1-z} \int_{\mu^{2}}^{(1-z)^{2}Q^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \Biggl\{ A_{q}^{(1)} \frac{\alpha_{S}(\mu^{2})}{1+b_{0}\alpha_{S}(\mu^{2})\log\frac{k_{\perp}^{2}}{\mu^{2}}} \\ & \times \Bigl[\frac{b_{1}}{b_{0}} \frac{\alpha_{S}(\mu^{2})\log(1+b_{0}\alpha_{S}\log\frac{k_{\perp}^{2}}{\mu^{2}})}{1+b_{0}\alpha_{S}(\mu^{2})\log\frac{k_{\perp}^{2}}{\mu^{2}}} \Bigr] \\ & + A_{q}^{(2)} \Bigl(\frac{\alpha_{S}(\mu^{2})}{1+b_{0}\alpha_{S}(\mu^{2})\log\frac{k_{\perp}^{2}}{\mu^{2}}} \Bigl[\frac{b_{1}}{b_{0}} \frac{\alpha_{S}(\mu^{2})\log(1+b_{0}\alpha_{S}\log\frac{k_{\perp}^{2}}{\mu^{2}})}{1+b_{0}\alpha_{S}(\mu^{2})\log\frac{k_{\perp}^{2}}{\mu^{2}}} \Bigr] \Bigr)^{2} \Biggr\}. \end{split}$$

Form for exponent

• Performing for the case of DY, we have

$$\log \Delta(N) = 2h^{(1)} \log (\bar{N}) + 2h^{(2)} (\lambda, Q^2/\mu^2)$$

 $\lambda = b_0 \alpha_s(\mu^2) \ln \bar{N}.$

$$h^{(1)} = \frac{A_q^{(1)}}{2b_0\lambda} [2\lambda + (1 - 2\lambda)\log(1 - 2\lambda)]$$

$$h^{(2)} = (A_q^{(1)}b_1 - b_0 A_q^{(2)}) \frac{2\lambda + \log(1 - 2\lambda)}{2b_0^3} + \frac{A_q^{(1)}b_1}{4b_0^3}\log^2(1 - 2\lambda) + \frac{A_q^{(1)}}{2b_0}\log(1 - 2\lambda)\log\frac{Q^2}{\mu^2}$$

Full Hard Kernel to Calculate

Next-to-Leading + Next-to-Leading Logarithm Order Calculation Make sure only counted once! - Subtract the matching NLL NPLL ••• LO 1 ... $\alpha_{\rm s}\log(N)^2$ $\alpha_{\rm s}\log(N)$ NLO ... $\alpha_{\rm S}^2 \log(N)^4$ $\alpha_s^2(\log(N)^2, \log(N)^3)$ NNLO $\alpha_S^k \log(N)^{2k} \quad \alpha_S^k \left(\log(N)^{2k-1}, \log(N)^{2k-2} \right)$ $\dots \ \alpha_S^k \log(N)^{2k-2p} + \cdots$ N^kLO

The need for prescriptions

- To compare with data, one must Mellin invert so that the formulas are in momentum-fraction space and not moment space
- The Mellin inversion of the hard kernel appears order-by-order, but it is divergent because of the divergence of α_S
- One can locate the divergences and avoid them as in the Minimal Prescription (main focus)
- Or one can manipulate the summation to make it convergent as in the Borel prescription (out of the scope of this talk)

Minimal Prescription

Cosine vs Expansion

Minimal Prescription

- In principle, one can just do the Mellin inversion exactly
- However, the ambiguity appears in the Landau pole
- We can locate the Landau and avoid it
- By looking at *e.g.* the $h^1(\lambda)$ term, we can see where the arguments of the logarithms go to 0 and become negative
- This location is the Landau pole

$$1 - 2\lambda > 0 \implies \bar{N} < \exp\left(1/2\alpha_S b_0\right)$$

Avoiding the Landau Pole

• The minimal prescription attempts to avoid the Landau pole by making its Mellin inversion contour away the left of the pole and to the right of the other poles

Rapidity Distribution

- In order to compare with data, we need to compare with the rapidity dependent resummed formulas
- Instead of a single Mellin, a Mellin-Fourier transform must be taken

$$\sigma(N,M) \equiv \int_0^1 \mathrm{d}\tau \tau^{N-1} \int_{-\ln\frac{1}{\sqrt{\tau}}}^{\ln\frac{1}{\sqrt{\tau}}} \mathrm{d}\eta e^{iM\eta} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2 \mathrm{d}\eta},$$
Rapidity Distribution

• Substituting the hadronic rapidity with a partonic rapidity

$$\hat{\eta} = \eta - \frac{1}{2}\log\left(x_1/x_2\right)$$

• We get
$$C^{\text{res}}(N,M) = \int_{0}^{1} dz z^{N-1} \int_{-\log 1/\sqrt{z}}^{\log 1/\sqrt{z}} d\hat{\eta} e^{iM\hat{\eta}} C^{\text{res}}(z)$$

• Since $C^{res}(z)$ is even under $\hat{\eta}$, the exponent can be converted to a cosine

$$C^{\rm res}(N,M) = \int_0^1 dz z^{N-1} \int_{-\log 1/\sqrt{z}}^{\log 1/\sqrt{z}} d\hat{\eta} \cos(M\hat{\eta}) C^{\rm res}(z)$$

Rapidity Distribution

• Because in the threshold limit, the hard part has delta functions, the $\hat{\eta}$ integration can be completed, namely

$$C^{\rm res}(N,M) = \int_0^1 dz z^{N-1} \cos(\frac{M}{2}\log z) C^{\rm res}(z)$$

Cosine vs Expansion

- Since we focus on the threshold region, that is when z → 1, the log of z will be close to 0, meaning the argument of the cosine will be close to 0
- One can expand to the cosine term such that

$$\cos(\frac{M}{2}\log z) \approx 1$$

• Or, one can take the cosine exactly how it is

$$\cos(\frac{M}{2}\log z) = \frac{1}{2}(e^{i\frac{M}{2}\log z} + e^{-i\frac{M}{2}\log z})$$

Expansion

• If we have the expansion, then

$$C^{\text{res}}(N,M) = \int_0^1 dz z^{N-1} \cos(\frac{M}{2}\log z) C^{\text{res}}(z)$$

• Goes to

$$C^{\rm res}(N,M) = \int_0^1 dz z^{N-1} C^{\rm res}(z) = C^{\rm res}(N)$$

• Note the independence of *C* on *M*

Cosine

• If we have the cosine, then

$$C^{\rm res}(N,M) = \int_0^1 dz z^{N-1} \cos(\frac{M}{2}\log z) C^{\rm res}(z)$$

• Goes to

$$C^{\text{res}}(N,M) = \int_0^1 dz z^{N-1} \Big[\frac{1}{2} \big(z^{iM/2} + z^{-iM/2} \big) \Big] C^{\text{res}}(z)$$
$$= \int_0^1 dz \frac{1}{2} (z^{(N+iM/2)-1} + z^{(N-iM/2)-1}) C^{\text{res}}(z)$$

PDFs

• Because of the change of $\eta \to \hat{\eta}$, the PDFs gather a $\pm i \frac{M}{2}$ in their Mellin moments

$$\sigma(N,M) = \sigma_0 \sum_{q\bar{q}} f_A^{\pi} (N + iM/2) f_B^W (N - iM/2) C^{\text{res}}(N,M)$$

• Whether *C* is dependent on *M* or not

MELLIN CONTOUR

- Here, *c* is to the right of the PDFs' rightmost poles
- Because the PDF moments are evaluated at $N \pm i \frac{M}{2}$ instead of the usual N, the poles are also located $\pm i \frac{M}{2}$ from the real axis (red and green stars)
- Contour is misshapen to ensure poles are encapsulated

$$N_{1} = c - i\frac{M}{2} + z_{1} e^{\phi_{1}} \qquad N_{2} = c - i\frac{M}{2} + z_{2} iM \qquad N_{3} = c + i\frac{M}{2} + z_{3} e^{\phi_{3}}$$

$$0 < z_{1} < \infty \qquad \qquad 0 < z_{2} < 1 \qquad \qquad 0 < z_{3} < \infty$$

Monte Carlo Results

Kinematic Coverage

- We want to be able to fit simultaneously the Drell-Yan and Leading Neutron data
- We can shape the pion PDFs at both high- and low- x_{π} with both datasets
- E615, NA10 DY
- H1, ZEUS LN

Kinematic Coverage

- We want to be able to fit simultaneously the Drell-Yan and Leading Neutron data
- We can shape the pion PDFs at both high- and low- x_{π} with both datasets
- E615, NA10 DY
- H1, ZEUS LN

Parametrization of the PDF

• We open the shape up a little for the valence (important for resummation in DY)

$$q_v(x_{\pi}, Q_0^2, \mathbf{a}) = \frac{N}{N'_v} x_{\pi}^{\alpha} (1 - x_{\pi})^{\beta} (1 + \gamma x^2)$$

where

$$N'_v = B(2 + \alpha, \beta + 1) + \gamma B(4 + \alpha, \beta + 1)$$

• And for the sea and the gluon, we parametrize by

$$f(x_{\pi}, Q_0^2, \mathbf{a}) = \frac{N}{N'} x_{\pi}^{\alpha} (1 - x_{\pi})^{\beta}$$

where

$$N' = B(2 + \alpha, \beta + 1)$$

As was done in Aicher et al.

Parameterization of the PDF (in terms of π^-)

- We equate the valence distributions: $\bar{u}_{v}^{\pi-} = d_{v}^{\pi-}$
- We equate the light sea distributions: $u^{\pi -} = \bar{d}^{\pi -} = u_s^{\pi -} = d_s^{\pi -} = s = \bar{s}$
- Normalizations of the valence and sea PDFs are fixed by the sum rules

Quark sum rule
$$\int_0^1 dx_\pi q_v^\pi = 1$$

Momentum Sum Rule
$$\int_0^1 dx_\pi x_\pi (2q_v^\pi + 6q_s^\pi + g^\pi) = 1$$

Monte Carlo

• Using Bayesian statistics, we describe the probability

 $\mathcal{P}(\mathbf{a}|\text{data}) \propto \mathcal{L}(\text{data}|\mathbf{a})\pi(\mathbf{a})$

• We quantify the expectation value and variance of our observable \mathcal{O} as a function of the parameter set a_i

$$E[\mathcal{O}] = \frac{1}{N} \sum_{i} \mathcal{O}(\mathbf{a}_i)$$

$$V[\mathcal{O}] = \frac{1}{N} \sum_{i} \left[\mathcal{O}(\mathbf{a}_{i}) - E[\mathcal{O}] \right]^{2}$$

Multi-Step Strategy

- Fitting PDFs to many types of observables all at once is time consuming and slows the fit
- We start with many replicas with flat priors to fit to one observable, the π^-W DY data
- The posteriors from that fit are used as the priors for the next fit, which includes the LN data

PDF Results – Cosine

• Fitting to both DY and LN data using the cosine approximation in the minimal prescription

• Clearly there are multiple solutions (evident in the valence)

k-means clustering

• The different colors represent different clusters of parameters

PDF parameter results – Cosine

- Fit parameter histograms
- Perform kmeans clustering on the valence b parameter

 χ^2 profile of clusters

- Showing histogram of χ^2 values for the different clusters
- Red is best, but not by much!
- Can look to physics for justification of throwing out cyan and green solutions

PDF Results – Cosine

- The cyan and green solutions are not favorable
- Cyan: the sea is larger than the valence at large x_{π} ; those distributions belong in the valence
- Green: The sea is negative, and the valence is much to large at high x_{π}

PDF Results – Cosine

- Remove the improper solutions
- Perform a *k*-means clustering on the gluon's *a* parameter as there are multiple solutions in the gluon PDF

χ^2 profile

- May not be able to distinguish results with χ^2 so close...
- Perhaps green may be thrown away

PDF Results – Expansion

• Replicas are a little more chaotic

- *k*-means clustering here is not so trustworthy!
- Use physics to eliminate some solutions, *i.e.* limit the valence parameter 1 < b < 3

PDF results – Expansion

• Elimination of unphysical solutions

- Here, k-means clustering shows red as having the best χ^2 , but cyan is most populated and probably the "best" solution
 - More work needs to be done here to justify certain solutions

$$\chi^2$$
 profile – Expansion

• Probably need to keep all solutions as χ^2 is not a good metric to distinguish among clusters

Comparisons – χ^2

Cosine method

		00							
number of replicas = 599									
summary of	testcluster								
prediction False False False False False False	reaction ln ln dy-pion dy-pion dy-pion	Favoriteidx 1000 p 2000 10001 ts 10002 ations 10003	best-val-r data gallery input.py msr msr-inspe summary:	Col H1 ZEUS E615 NA10 CNA10	npts 58 50 55 36 20	chi2 22.07 72.75 72.19 48.97 27.85	ist-12 n-1000 chi2/npts ist-12 1.46 ist-12 1.31 ist-12 1.36 ist-12 1.36 ist-12 1.39 ist-13 1.39	01.png 02.png 03.png 0.95 0.png 0.png 0.90 0.84	
AirDrop					219	243.82	n-E615 r11.11 .		

|--|

number	of i	renlicas - 2	83						
							📜 Friday, June 26th 👻		
summar	'y of	testcluster	2						
-	Chann								
predic	ction	reaction	idx	col	npts	chi2	chi2/npts	norm	
#F	alse	ln	1000	H1	58	21.93	0.38	1.25	
F	alse	ln	^{Favori} 2000	ZEUS	50	74.39	1.49	0.95	
F	alse	dy-pion	10001	E615	55	57.77	1.05	1.08	
F	alse	dy-pion	10002	results1 NA10	36	26.58	^{ry} 0.74	0.90	
F	alse	dy-pion	10003	results1cNA10	20	15.29	^{py} 0.76	0.83	
Fa	a Eavori	tes		results2check8	219	195.96	inspecte 0.89	•	

61

Comparisons – data over theory DY E615

 Most notably the resummation affects the E615 dataset as it contains higher x_F values than NA10

Cosine method

Expansion method

Comparisons – Momentum Fractions

Comparisons – PDFs

• Comparison of the PDFs at the initial scale with fixed order

K Factor

- We can study the impact of each resummation method by comparing cross sections divided by the NLO piece
- Shown to the right is the result by Westmark/Owens

K Factor

- K facto for kinematics associated with the E615 dataset
- PDFs are consistent with each curve
- Cosine seems to gather more terms at higher orders than expansion

K Factor

- Additional K Factor provided by Westmark/Owens
- Invokes an "exact" resummation prescription
- Lowers the K factor from expansion to near 1 for all x_F
- Exact will probably be closest to NLO

Double Mellin Resummation "Exact"

Exact Method

- Instead of a Mellin-Fourier transform as was the case for the cosine and expansion methods, use double Mellin
- The task is to calculate

$$\log \Delta(N_1, N_2) = \int_0^1 dz_1 \int_0^1 dz_2 \frac{(z_1^{N_1 - 1} - 1)(z_2^{N_2 - 1} - 1)}{(1 - z_1)(1 - z_2)} A_q \Big(\alpha_S \big((1 - z_1)(1 - z_2) Q^2 \big) \Big) + \int_0^1 dz_1 \frac{z_1^{N_1 - 1} - 1}{1 - z_1} \int_{\mu_F^2}^{(1 - z_1)Q^2} \frac{dk_\perp^2}{k_\perp^2} A_q \big(\alpha_S(k_\perp^2) \big) + \int_0^1 dz_2 \frac{z_2^{N_2 - 1} - 1}{1 - z_2} \int_{\mu_F^2}^{(1 - z_2)Q^2} \frac{dk_\perp^2}{k_\perp^2} A_q \big(\alpha_S(k_\perp^2) \big)$$

Westmark/Owens Expressions

- Westmark and Owens have already derived their expressions
- These are to be compared with $h^{(1)}$ and $h^{(2)}$ as shown previously

$$g_{1}(\lambda_{1},\lambda_{2}) = \frac{A_{1}}{b_{0}(\lambda_{1}+\lambda_{2})} \Big(\big(1-(\lambda_{1}+\lambda_{2})\big) \ln\big(1-(\lambda_{1}+\lambda_{2})\big) + \lambda_{1}+\lambda_{2}\Big),$$

$$g_{2}(\lambda_{1},\lambda_{2}) = \frac{A_{1}b_{1}}{b_{0}^{2}} \left(\ln\big(1-(\lambda_{1}+\lambda_{2})\big) + \frac{1}{2}\ln^{2}\big(1-(\lambda_{1}+\lambda_{2})\big) - (\lambda_{1}+\lambda_{2})\big) \right)$$

$$-\frac{2A_{1}\gamma_{E}}{b_{0}} \ln\big(1-(\lambda_{1}+\lambda_{2})\big) + \frac{A_{1}}{b_{0}}\ln\big(1-(\lambda_{1}+\lambda_{2})\big) \ln\frac{Q^{2}}{\mu_{R}^{2}}$$

$$-\frac{A_{2}}{b_{0}^{2}} \Big(\lambda_{1}+\lambda_{2}+\ln\big(1-(\lambda_{1}+\lambda_{2})\big)\Big) + \frac{A_{1}}{b_{0}}(\lambda_{1}+\lambda_{2})\ln\frac{\mu_{F}^{2}}{\mu_{R}^{2}}.$$

• Here, $\lambda_1 = b_0 \alpha_S \log(N_1)$ and $\lambda_2 = b_0 \alpha_S \log(N_2)$

Westmark/Owens Expressions

• However, we note that \overline{N} is not used whereas I use \overline{N} in the cosine and expansion methods

$$g_{1}(\lambda_{1},\lambda_{2}) = \frac{A_{1}}{b_{0}(\lambda_{1}+\lambda_{2})} \Big(\Big(1-(\lambda_{1}+\lambda_{2})\Big) \ln \Big(1-(\lambda_{1}+\lambda_{2})\Big) + \lambda_{1}+\lambda_{2}\Big),$$

$$g_{2}(\lambda_{1},\lambda_{2}) = \frac{A_{1}b_{1}}{b_{0}^{2}} \Big(\ln \Big(1-(\lambda_{1}+\lambda_{2})\Big) + \frac{1}{2}\ln^{2}\Big(1-(\lambda_{1}+\lambda_{2})\Big) - (\lambda_{1}+\lambda_{2})\Big)$$

$$- \frac{2A_{1}\gamma_{E}}{b_{0}} \ln \Big(1-(\lambda_{1}+\lambda_{2})\Big) + \frac{A_{1}}{b_{0}}\ln\Big(1-(\lambda_{1}+\lambda_{2})\Big) \ln \frac{Q^{2}}{\mu_{R}^{2}}$$

$$- \frac{A_{2}}{b_{0}^{2}}\Big(\lambda_{1}+\lambda_{2}+\ln\Big(1-(\lambda_{1}+\lambda_{2})\Big)\Big) + \frac{A_{1}}{b_{0}}(\lambda_{1}+\lambda_{2})\ln\frac{\mu_{F}^{2}}{\mu_{R}^{2}}.$$

• Additionally, a term $\propto \gamma_E$ appears that is not consistent with our expressions

• Evaluate the integrations using the large N approximation as before

$$z^{N-1} - 1 \approx -\Theta(1 - \frac{1}{\bar{N}} - z)$$

• Obtain our own terms to use in the PDF extractions
Warning – Landau Pole

- In the case of the cosine and expansion methods, the Landau pole appeared on the real axis at one point
- However, since we are doing a Double Mellin calculation, the Landau pole moves in Mellin space

Warning – Landau Pole

• We want to calculate the Double Mellin inversion to compare with data

$$\frac{1}{\sigma_0} \frac{d^2 \sigma}{dQ^2 dx_F} = \sum_{q,\bar{q}} e_q^2 \frac{1}{(2\pi i)^2} \int_{C_1 - i\infty}^{C_1 + i\infty} dN_1 (x_1^0)^{-N_1} \int_{C_2 - i\infty}^{C_2 + i\infty} dN_2 (x_2^0)^{-N_2} f_\pi(N_1) f_W(N_2) \sigma(N_1, N_2)$$

- For each N_1 , we need to perform a contour integration over N_2
- In this case, the Landau pole appears at

$$N_L = \frac{1}{N_1} e^{\frac{1}{\alpha_S b_0}}$$

Warning – Landau Pole $\frac{1}{\sigma_0} \frac{d^2 \sigma}{dQ^2 dx_F} = \sum_{q,\bar{q}} e_q^2 \frac{1}{(2\pi i)^2} \int_{C_1 - i\infty}^{C_1 + i\infty} dN_1 (x_1^0)^{-N_1} \int_{C_2 - i\infty}^{C_2 + i\infty} dN_2 (x_2^0)^{-N_2} f_\pi(N_1) f_W(N_2) \sigma(N_1, N_2)$

- We can freely choose N₁, but we have to be careful with our choice of N₂ in order to keep the Landau pole to the right of our contour while making sure to enclose the poles associated with the PDFs!
- Suggestions
 - Where the Landau pole does not encounter the nominal choice of $N_2 = c_2 + z_2 e^{i\phi_2}$ where $\phi_2 = 3\pi/4$ use it
 - When the Landau pole comes close, we need to shrink the angle to be closer to the real axis

$$\frac{1}{\sigma_0} \frac{d^2 \sigma}{dQ^2 dx_F} = \sum_{q,\bar{q}} \frac{e_q^2}{2\pi^2} \int_0^\infty dz_1 \int_0^\infty dz_2 \operatorname{Re} \left[e^{i(\phi_1 - \phi_2)} \sigma(N, M^*) - e^{i(\phi_1 + \phi_2)} \sigma(N, M) \right]$$

Warning – Landau Pole

- Following points in N₁ (the blue dots), we have to draw an N₂ contour (green) and conjugate (red)
- The Landau pole appears as the orange star
- The dotted lines are the "nominal" choice, where $\phi_2 = 3\pi/4$

Choice of Angle

• The Choice of the angle is the following

$$\phi_2 = \max\left(\frac{3\pi}{4}, \frac{\theta_c + \pi}{2}\right)$$

where

$$\theta_c = -\arg\left(\frac{1}{N_1}e^{\frac{1}{\alpha_S b_0}}\right) = \arctan\frac{\mathrm{Im}(N_L)}{\mathrm{Re}(N_L)}$$

Conclusions

Conclusions

- The analysis of the resummation will focus on the Minimal Prescription
- Cosine and expansion methods need a little cleaning up, but results are almost complete
- Derivation of the Double Mellin "exact" expressions is needed
- Fits done with "exact" method need to done and compared with cosine and expansion
- Expectation is that the K factor for the "exact" method will be closer to 1 and the PDFs will be closer to the NLO calculation