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Outline

• Motivation
• How to compute resummation expressions
• Minimal Prescription
• Monte Carlo PDF results
• “Exact” Resummation with Double Mellin
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Introduction/Motivation
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Motivation
•QCD allows us to study the structure of protons
in terms of partons (quarks, antiquarks, and 
gluons)
•Use factorization theorems to separate hard 
partonic physics out of soft, non-perturbative 
objects to quantify structure
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Motivation
What to do:
•Define a structure of nucleons in terms of quantum 

field theories
• Identify theoretical observables that factorize into 

non-perturbative objects and perturbatively 
calculable physics
•Perform global QCD analysis as structures are 

universal and are the same in all subprocesses
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Pions
•Pion is the Goldstone boson 

associated with chiral symmetry 
breaking
• Lightest hadron as !!

""
≪ 1 and 

dictates the nature of hadronic 
interactions at low energies
•Simultaneously a 𝑞$𝑞 bound state
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Theoretical Interest
•Behavior of PDF as 𝑥! → 1 (v!~ 1 − 𝑥! "#) can 
be related to momentum dependence of 
underlying interaction
•Perturbative QCD predicts that 𝛽 = 1
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Theoretical Interest
•Recent lattice calculations as well as 
phenomenologically determined valence quark 
PDFs using threshold resummation indicate    
𝛽 = 1 as opposed to fixed order (𝛽 = 1/2)
•Our analysis with threshold resummation will 
have impact on this question
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Previous Pion Fits
•Most recent (M. Aicher, 
et al, 2010) pion fit to DY 
data
•Fit uses soft gluon 
resummation
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Comparison - Pion PDFs

PDF using soft gluon 
resummation

PDF using only fixed-
order pQCD (JAM18) 10



Uncertainty
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• Note uncertainty band on 
PDFs are strictly from the 
data errors and 
parameterization bias
• No theoretical uncertainty 

shown (more on this later)



Drell-Yan (DY) Definitions
Hadronic variable
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Partonic variable
!𝑆 is the center of 

mass momentum 
squared of 

incoming partons



Fixed Order Up to NLO
Feynman diagrams for 
DY amplitudes in 
collinear factorization
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LO
LO: 𝒪(1)

•𝑧 = 1 corresponds 
to partonic 
threshold
•All ,𝑆 is equal to 𝑄"

•All energy of hard 
partons turns into 
virtuality of photon
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NLO Virtual 𝑞
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Corrections

•Virtual corrections at 
NLO are proportional to 
𝛿 1 − 𝑧
• Exhibit Born kinematics
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NLO Real Emission
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•Next to leading order, real gluon emissions
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NLO Real Emission
•Plus distributions come from subtraction 
procedure of collinear singularities
•When 𝑧 → 1, log(1 − 𝑧) can be large and 
potentially spoil perturbation
•Appear in all orders in a predictable manner
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K-factor
• Different 

prescriptions 
show different 
results, especially 
at large 𝑥"
• Could put a 

theoretical 
uncertainty on 
the pion PDFs
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Computing Resummation 
Expressions
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Soft Gluon Resummation

• These are Real Emitted Gluons from a quark line
• Can perturbatively calculate these emissions to all orders of 𝛼!
• Here, 𝑧# near 1
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Setting it up

• Because of the Eikonal approximation, in the soft limit, matrix 
elements of large numbers of emitted gluons can be factorized as 
such:

• Even though the amplitudes factorize in 𝑧-space in that way, the 
phase space does not because of the presence of a delta function for 
conservation of momentum
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Setting it up

• In Mellin space, however, we do have factorization of the phase space,

• So for hard kernels, for each order of 𝛼!, we have: 

• Where 𝐶"#$%& (𝑁) is the hard kernel for one soft gluon emitted from the 
quark line
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Exponentiation

• Thus, to sum over all the hard kernels is to exponentiate the emission 
of one soft gluon

• Exponentiation is a key concept in threshold resummation
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Computing the Expressions

• Specifically for the DY case, we need to use the following for each 
initial state parton (2 for DY)

and

24



Computing the Expressions

• We also need a closed form for 𝛼!, in which case, we use the two-
loop (needed for up to NLL accuracy)
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Computing the Expressions

• Plugging those in, we get the following
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Large 𝑁 Approximation

• The 𝑧 integral on the previous slide is difficult, but not impossible
• Recall, our aim is the soft limit, i.e. when 𝑧 → 1
• In Mellin space, soft limit is 𝑁 → ∞
• In the large 𝑁 limit, we may use the approximation

where
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Plugging it in

• We can use the large 𝑁 approximation to compute the following
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Form for exponent

• Performing for the case of DY, we have
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Full Hard Kernel to Calculate

Fixed order Kernel
Already have calculated this at NLO!

Resummation Kernel.
Calculate such as Leading Log, 
or Next-to-Leading Log Matching coefficients

Need to subtract in 
order to avoid double 
counting
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Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼$ log 𝑁 % 𝛼! log(𝑁) … --

NNLO 𝛼!% log 𝑁 & 𝛼$% log 𝑁 % , log 𝑁 ' … --

… … … … …
NkLO 𝛼!( log 𝑁 %( 𝛼!( log 𝑁 %()* , log 𝑁 %()% … 𝛼!( log 𝑁 %()%+ +⋯31

Make sure only counted once!
- Subtract the matching



The need for prescriptions

• To compare with data, one must Mellin invert so that the formulas 
are in momentum-fraction space and not moment space
• The Mellin inversion of the hard kernel appears order-by-order, but it 

is divergent because of the divergence of 𝛼!
• One can locate the divergences and avoid them as in the Minimal 

Prescription (main focus)
• Or one can manipulate the summation to make it convergent as in the 

Borel prescription (out of the scope of this talk)
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Minimal Prescription
Cosine vs Expansion
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Minimal Prescription

• In principle, one can just do the Mellin inversion exactly
• However, the ambiguity appears in the Landau pole
• We can locate the Landau and avoid it
• By looking at e.g. the ℎ*(𝜆) term, we can see where the arguments of 

the logarithms go to 0 and become negative
• This location is the Landau pole
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Avoiding the Landau Pole

• The minimal 
prescription 
attempts to avoid 
the Landau pole by 
making its Mellin
inversion contour 
away the left of 
the pole and to the 
right of the other 
poles
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Rapidity Distribution

• In order to compare with data, we need to compare with the rapidity 
dependent resummed formulas
• Instead of a single Mellin, a Mellin-Fourier transform must be taken
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Rapidity Distribution

• Substituting the hadronic rapidity with a partonic rapidity

• We get

• Since 𝐶,-$ 𝑧 is even under �̂�, the exponent can be converted to a 
cosine
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Rapidity Distribution

• Because in the threshold limit, the hard part has delta functions, the 
�̂� integration can be completed, namely
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Cosine vs Expansion

• Since we focus on the threshold region, that is when 𝑧 → 1, the log of 
z will be close to 0, meaning the argument of the cosine will be close 
to 0
• One can expand to the cosine term such that 

• Or, one can take the cosine exactly how it is 
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Expansion

• If we have the expansion, then 

• Goes to 

• Note the independence of C on M
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Cosine

• If we have the cosine, then 

• Goes to 
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PDFs

• Because of the change of 𝜂 → �̂�, the PDFs gather a ±𝑖 .
%

in their 
Mellin moments

• Whether C is dependent on M or not
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MELLIN CONTOUR

c°iM/2

iM/2
N

• Here, 𝑐 is to the right of the PDFs’ 
rightmost poles

• Because the PDF moments are 
evaluated at 𝑁 ± 𝑖 %& instead of 
the usual 𝑁, the poles are also 
located ±𝑖 %& from the real axis 
(red and green stars)

• Contour is misshapen to ensure 
poles are encapsulated
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Monte Carlo Results
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Kinematic Coverage

• We want to be able to fit 
simultaneously the Drell-
Yan and Leading Neutron 
data
• We can shape the pion 

PDFs at both high- and 
low-𝑥/ with both datasets
• E615, NA10 – DY
• H1, ZEUS – LN
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Kinematic Coverage

• We want to be able to fit 
simultaneously the Drell-
Yan and Leading Neutron 
data
• We can shape the pion 

PDFs at both high- and 
low-𝑥/ with both datasets
• E615, NA10 – DY
• H1, ZEUS – LN
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Very little 
kinematic 
overlap!



Parametrization of the PDF

• We open the shape up a little for the valence (important for 
resummation in DY)

• And for the sea and the gluon, we parametrize by

As was done in Aicher et al.
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Parameterization of the PDF (in terms of 𝜋!)

• We equate the valence distributions: 8𝑢0/) = 𝑑0/)

• We equate the light sea distributions: 𝑢/) = �̅�/) = 𝑢$/) = 𝑑$/) = 𝑠 = �̅�
• Normalizations of the valence and sea PDFs are fixed by the sum rules

Quark sum rule

Momentum Sum Rule
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Monte Carlo
• Using Bayesian statistics, we describe the probability

• We quantify the expectation value and variance of our observable 𝒪 as a function 
of the parameter set 𝒂6
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Multi-Step Strategy

• Fitting PDFs to many types of observables all at once is time 
consuming and slows the fit
• We start with many replicas with flat priors to fit to one observable, 

the 𝜋)𝑊 DY data
• The posteriors from that fit are used as the priors for the next fit, 

which includes the LN data
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PDF Results – Cosine

• Fitting to both DY and LN data using the cosine approximation in the 
minimal prescription

• Clearly there are multiple solutions (evident in the valence)
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𝑘-means clustering

• The different colors represent different clusters of parameters
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PDF parameter 
results – Cosine

• Fit parameter 
histograms
• Perform 𝑘-

means 
clustering on 
the valence 𝑏
parameter
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𝜒" profile of clusters

• Showing histogram of 𝜒%
values for the different 
clusters
• Red is best, but not by 

much!
• Can look to physics for 

justification of throwing 
out cyan and green 
solutions
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PDF Results – Cosine

• The cyan and green solutions are not favorable
• Cyan: the sea is larger than the valence at large 𝑥/; those 

distributions belong in the valence
• Green: The sea is negative, and the valence is much to large at high 
𝑥/
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PDF Results – Cosine

• Remove the improper solutions 
• Perform a 𝑘-means clustering on the gluon’s 𝑎 parameter as there are 

multiple solutions in the gluon PDF
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𝜒" profile

• May not be able to 
distinguish results with 
𝜒% so close…
• Perhaps green may be 

thrown away
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PDF Results – Expansion

• Replicas are a little more chaotic

• 𝑘-means clustering here is not so trustworthy!
• Use physics to eliminate some solutions, i.e. limit the valence 

parameter 1 < 𝑏 < 3
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PDF results – Expansion 

• Elimination of unphysical solutions

• Here, 𝑘-means clustering shows red as having the best 𝜒%, but cyan is 
most populated and probably the “best” solution
• More work needs to be done here to justify certain solutions
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𝜒" profile – Expansion

• Probably need to 
keep all solutions as 
𝜒% is not a good 
metric to 
distinguish among 
clusters
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Comparisons – 𝜒"

Cosine method

Expansion method
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Comparisons – data over theory DY E615

• Most notably the resummation affects the E615 dataset as it contains 
higher 𝑥" values than NA10

Cosine method Expansion method
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Comparisons – Momentum Fractions
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Comparisons – PDFs

• Comparison of the PDFs at the initial scale with fixed order
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K Factor

• We can study the 
impact of each 
resummation 
method by 
comparing cross 
sections divided by 
the NLO piece
• Shown to the right 

is the result by 
Westmark/Owens
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K Factor

• K facto for 
kinematics 
associated with the 
E615 dataset
• PDFs are consistent 

with each curve
• Cosine seems to 

gather more terms 
at higher orders 
than expansion
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K Factor

• Additional K Factor 
provided by 
Westmark/Owens
• Invokes an “exact” 

resummation 
prescription
• Lowers the K factor from 

expansion to near 1 for 
all 𝑥"
• Exact will probably be 

closest to NLO
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Double Mellin Resummation 
“Exact”
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Exact Method

• Instead of a Mellin-Fourier transform as was the case for the cosine 
and expansion methods, use double Mellin
• The task is to calculate
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Westmark/Owens Expressions

• Westmark and Owens have already derived their expressions
• These are to be compared with ℎ(*) and ℎ(%) as shown previously

• Here, 𝜆* = 𝑏3𝛼!log 𝑁* and 𝜆% = 𝑏3𝛼!log 𝑁%
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Westmark/Owens Expressions

• However, we note that &𝑁 is not used whereas I use &𝑁 in the cosine and 
expansion methods

• Additionally, a term ∝ 𝛾' appears that is not consistent with our 
expressions
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Strategy

• Evaluate the integrations using the large 𝑁 approximation as before

• Obtain our own terms to use in the PDF extractions
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Warning – Landau Pole

• In the case of the cosine and expansion methods, the Landau pole 
appeared on the real axis at one point
• However, since we are doing a Double Mellin calculation, the Landau 

pole moves in Mellin space
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Warning – Landau Pole

• We want to calculate the Double Mellin inversion to compare with 
data

• For each 𝑁*, we need to perform a contour integration over 𝑁%
• In this case, the Landau pole appears at 
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Warning – Landau Pole

• We can freely choose 𝑁*, but we have to be careful with our choice of 
𝑁% in order to keep the Landau pole to the right of our contour while 
making sure to enclose the poles associated with the PDFs!
• Suggestions 
• Where the Landau pole does not encounter the nominal choice of 𝑁& = 𝑐& +
𝑧&𝑒67! where 𝜙& = 3𝜋/4 use it
• When the Landau pole comes close, we need to shrink the angle to be closer 

to the real axis
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Warning – Landau 
Pole
• Following points in 𝑁*

(the blue dots), we have 
to draw an 𝑁% contour 
(green) and conjugate 
(red)
• The Landau pole appears 

as the orange star
• The dotted lines are the 

“nominal” choice, where 
𝜙% = 3𝜋/4
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Choice of Angle

• The Choice of the angle is the following
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Conclusions
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Conclusions

• The analysis of the resummation will focus on the Minimal 
Prescription
• Cosine and expansion methods need a little cleaning up, but results 

are almost complete
• Derivation of the Double Mellin “exact” expressions is needed
• Fits done with “exact” method need to done and compared with 

cosine and expansion
• Expectation is that the K factor for the “exact” method will be closer 

to 1 and the PDFs will be closer to the NLO calculation
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