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Motivation 
•  What is “Pion Target”?  
•  Pion lifetime is too short:  
    ~10-8 sec(Π+/-), ~10-17 sec(Π0)

•  The exact pion pole is not accessible  
    in electroproduction processes (t<0<mΠ

2). 
•  Validity of the extrapolation from the off-shell 

results to the on-shell limit is questionable/
debated. 

•  EM structure of the off-shell hadron is more 
complicate involving more unknown functions 
with more dynamical variables. 

 



pions in a nucleon’s cloud are not real (on-shell) but virtual
(off-shell) particles. Accordingly, one cannot access the
form factor at the exact pion pole in the actual experiment,
as the extrapolation to t → m2

π involves the disallowed
kinematic region of the electroproduction (t < 0). This may
raise some questions about the validity of the extrapolation
from the off-shell results to the on-shell limit. Furthermore,
the EM structure of the off-shell hadron is more compli-
cated than the on-shell hadron and involves more form
factors [12–20]. For instance, the off-shell EM structure of
the pseudoscalar meson [12,13] requires two form factors
[21,22], which are related by the Ward-Takahashi identity
(WTI) [23,24]. The off-shell electromagnetic form factors
for the boson bound state have been calculated in Ref. [25]
using the light-front field theory, and the nonvanishing zero
modes were found to be crucial to preserve the WTI. While
there have been some theoretical studies on the off-shell
pion EM form factors using the chiral perturbation theory
[12], Nambu–Jona-Lasinio model [13], and the continuum
methods for the strong-interaction bound-state problem
[14,15], a further systematic study on the off-shell form
factors of the pion is still required.
In this work, we explore the electromagnetic off-shell

effects for the pion using an exactly solvable manifestly
covariantmodel of (3þ 1)-dimensional fermion field theory
and compare the two off-shell form factors F1ðQ2; tÞ and
F2ðQ2; tÞ with the data extracted from the pion electro-
productionreaction[7,8].Theaimofthispaper is toprovideat
least a clear exampleofdemonstrationdiscussing thevalidity
of the extrapolation of the off-shell results (t ≠ m2

π) to the on-
shell limit (t ¼ m2

π) for the pion.We exhibit F1ð2ÞðQ2; tÞ not
onlyfor thespacelikeregion(Q2 > 0)butalsofor thetimelike
region (Q2 < 0), providing the three-dimensional (3D)
imaging of F1 and F2 in terms of ðQ2; tÞ values.
We organize thiswork as follows. In Sec. II, we review the

formulation of F1 and F2 satisfying the WTI, in which two
form factors are necessary to define the off-shell matrix
elements of the pion EM current. In addition, we provide a
sumrule, coinedhereas themaster equation,whichweobtain
from the WTI that the form factors must obey regardless of
whether they are on shell or off shell.WhileF2ðQ2; tÞ is zero

as t → m2
π , we find a new measurable form factor in the on-

shell limit by defining gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2
πÞ.

Especially, we show that gðQ2 ¼ 0; t ¼ m2
πÞ is found to

be related with the pion charge radius. In Sec. III, we present
the analytic covariant model calculation of F1 and F2

confirming that themodel satisfies themaster equation given
by Eq. (11) as well as the WTI. We also discuss the charge
renormalization for F1ðQ2; tÞ together with the relation
between the coupling gπqq̄ of the πqq̄ vertex and the pion
decay constant fπ . In Sec. IV, we present 3D imaging of
F1ðQ2; tÞ; F2ðQ2; tÞ, and gðQ2; tÞ and compare them with
the available data extracted from the pion electroproduction
reaction for both the off-shell region (t < 0) and the on-shell
limit (t → m2

π). A summary of the main results follows in
Sec. V. In the Appendix, the explicit derivation of Eqs. (19)
and (20) is briefly summarized.

II. OFF-SHELL PION ELECTROMAGNETIC
FORM FACTORS

Using the invariance of the strong interaction under charge
conjugation, one finds that the electromagnetic form factors
of antiparticles are just the negative of those of the particles.
Therefore, theπ0 and η do not have any electromagnetic form
factors even for theoff-mass shell case.However, the charged
pions allow the electromagnetic form factors depicted in
Fig. 2. The most general parametrization of the vertex
function Γμ for the off-shell electromagnetic form factors
of the charged pion is given in terms of the initial and final
4-momenta, pμ and p0μ, as [12]

Γμðp; p0Þ ¼ ðp0 þ pÞμG1ðq2; p2; p02Þ þ qμG2ðq2; p2; p02Þ;

ð1Þ

where q ¼ p0 − p is the 4-momentum transfer of the
virtual photon at the vertex. This off-shell vertex satisfies
the WTI [12]

qμΓμðp; p0Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ; ð2Þ
where

ΔðpÞ ¼ 1

p2 −m2
π − Πðp2Þ þ {ε

ð3Þ

FIG. 1. ep → e0πþn scattering.

FIG. 2. Electromagnetic charged pion scattering with the form
factors depicted by the black blob.
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We investigate the pion electromagnetic half-off-shell form factors, which parametrize the matrix
element of the charged pion electromagnetic current with one leg off mass shell and the other leg on mass
shell, using an exactly solvable manifestly covariant model of a (3þ 1)- dimensional fermion field theory.
The model provides a three-dimensional imaging of the two off-shell pion form factors F1 and F2 as a
function of ðQ2; tÞ, which are related to each other, satisfying the Ward-Takahashi identity. The
normalization of the renormalized charge form factor F1 is fixed by F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1, while
the other form factor F2 vanishes; i.e., F2ðQ2; t ¼ m2

πÞ ¼ 0 for any value of Q2 due to the time-reversal
invariance of the strong interaction. We define the new form factor gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2

πÞ and find
that gðQ2; tÞ can be measurable in the on-mass-shell limit. In particular, gðQ2 ¼ 0; t ¼ m2

πÞ is related with
the pion charge radius. We also compare our form factors with the data extracted from the pion
electroproduction reaction for both the off-shell region (t < 0) and the on-shell limit (t → m2

π).
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I. INTRODUCTION

Electromagnetic (EM) form factors of hadrons are
the important physical observables providing the EM
information on the bound-state properties of hadrons and
their internal structures of quarks and gluons. The pion is
the simplest hadronic system, the valence structure of
which is a bound state of a quark and an antiquark, and
is known to be parametrized by a single on-mass-shell (or
simply on-shell) EM form factor, FπðQ2Þ, which depends
on the 4-momentum squared q2ð¼ −Q2Þ of the virtual
photon.
The form factor FπðQ2Þ for the low spacelike momen-

tum transfers (Q2 < 0.3 GeV2) has been measured directly
by elastic scattering of high-energy mesons off atomic

electrons [1–4]. However, the extraction of FπðQ2Þ to
higher Q2 regions through elastic scattering is very difficult
experimentallymainly due to the limitation of the availability
of accelerators to produce high-energy and high-current
beams of unstable particles and detectors for identifying
and measuring the scattered particles at very forward angles
[5]. Thus,FπðQ2Þ for thehigherQ2 values has been extracted
from the pion electroproduction reaction by exploiting the
nucleon’s pion cloud as a target, which may be regarded as
the exclusive version of the Sullivan process [6]. That is,
FπðQ2Þ has been extracted from the measurements of the
cross sections for the reaction 1Hðe; e0πþÞn (see Fig. 1) up to
values of Q2 ¼ 3.91 GeV2 [7–11]. The longitudinal part
of the cross section from the pion electroproduction encodes
the meson exchange process, in which the virtual photon
couples to a virtual pion inside the nucleon. This process is
expected to dominate at small values of the 4-momentum
transfer tð<0Þ, allowing for the determination of the pion
form factor.
However, the main problem in using the electroproduc-

tion process as a tool for accessing a “pion target” is that the
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pions in a nucleon’s cloud are not real (on-shell) but virtual
(off-shell) particles. Accordingly, one cannot access the
form factor at the exact pion pole in the actual experiment,
as the extrapolation to t → m2

π involves the disallowed
kinematic region of the electroproduction (t < 0). This may
raise some questions about the validity of the extrapolation
from the off-shell results to the on-shell limit. Furthermore,
the EM structure of the off-shell hadron is more compli-
cated than the on-shell hadron and involves more form
factors [12–20]. For instance, the off-shell EM structure of
the pseudoscalar meson [12,13] requires two form factors
[21,22], which are related by the Ward-Takahashi identity
(WTI) [23,24]. The off-shell electromagnetic form factors
for the boson bound state have been calculated in Ref. [25]
using the light-front field theory, and the nonvanishing zero
modes were found to be crucial to preserve the WTI. While
there have been some theoretical studies on the off-shell
pion EM form factors using the chiral perturbation theory
[12], Nambu–Jona-Lasinio model [13], and the continuum
methods for the strong-interaction bound-state problem
[14,15], a further systematic study on the off-shell form
factors of the pion is still required.
In this work, we explore the electromagnetic off-shell

effects for the pion using an exactly solvable manifestly
covariantmodel of (3þ 1)-dimensional fermion field theory
and compare the two off-shell form factors F1ðQ2; tÞ and
F2ðQ2; tÞ with the data extracted from the pion electro-
productionreaction[7,8].Theaimofthispaper is toprovideat
least a clear exampleofdemonstrationdiscussing thevalidity
of the extrapolation of the off-shell results (t ≠ m2

π) to the on-
shell limit (t ¼ m2

π) for the pion.We exhibit F1ð2ÞðQ2; tÞ not
onlyfor thespacelikeregion(Q2 > 0)butalsofor thetimelike
region (Q2 < 0), providing the three-dimensional (3D)
imaging of F1 and F2 in terms of ðQ2; tÞ values.
We organize thiswork as follows. In Sec. II, we review the

formulation of F1 and F2 satisfying the WTI, in which two
form factors are necessary to define the off-shell matrix
elements of the pion EM current. In addition, we provide a
sumrule, coinedhereas themaster equation,whichweobtain
from the WTI that the form factors must obey regardless of
whether they are on shell or off shell.WhileF2ðQ2; tÞ is zero

as t → m2
π , we find a new measurable form factor in the on-

shell limit by defining gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2
πÞ.

Especially, we show that gðQ2 ¼ 0; t ¼ m2
πÞ is found to

be related with the pion charge radius. In Sec. III, we present
the analytic covariant model calculation of F1 and F2

confirming that themodel satisfies themaster equation given
by Eq. (11) as well as the WTI. We also discuss the charge
renormalization for F1ðQ2; tÞ together with the relation
between the coupling gπqq̄ of the πqq̄ vertex and the pion
decay constant fπ . In Sec. IV, we present 3D imaging of
F1ðQ2; tÞ; F2ðQ2; tÞ, and gðQ2; tÞ and compare them with
the available data extracted from the pion electroproduction
reaction for both the off-shell region (t < 0) and the on-shell
limit (t → m2

π). A summary of the main results follows in
Sec. V. In the Appendix, the explicit derivation of Eqs. (19)
and (20) is briefly summarized.

II. OFF-SHELL PION ELECTROMAGNETIC
FORM FACTORS

Using the invariance of the strong interaction under charge
conjugation, one finds that the electromagnetic form factors
of antiparticles are just the negative of those of the particles.
Therefore, theπ0 and η do not have any electromagnetic form
factors even for theoff-mass shell case.However, the charged
pions allow the electromagnetic form factors depicted in
Fig. 2. The most general parametrization of the vertex
function Γμ for the off-shell electromagnetic form factors
of the charged pion is given in terms of the initial and final
4-momenta, pμ and p0μ, as [12]

Γμðp; p0Þ ¼ ðp0 þ pÞμG1ðq2; p2; p02Þ þ qμG2ðq2; p2; p02Þ;

ð1Þ

where q ¼ p0 − p is the 4-momentum transfer of the
virtual photon at the vertex. This off-shell vertex satisfies
the WTI [12]

qμΓμðp; p0Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ; ð2Þ
where

ΔðpÞ ¼ 1

p2 −m2
π − Πðp2Þ þ {ε

ð3Þ

FIG. 1. ep → e0πþn scattering.

FIG. 2. Electromagnetic charged pion scattering with the form
factors depicted by the black blob.
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πÞ is found to

be related with the pion charge radius. In Sec. III, we present
the analytic covariant model calculation of F1 and F2

confirming that themodel satisfies themaster equation given
by Eq. (11) as well as the WTI. We also discuss the charge
renormalization for F1ðQ2; tÞ together with the relation
between the coupling gπqq̄ of the πqq̄ vertex and the pion
decay constant fπ . In Sec. IV, we present 3D imaging of
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the available data extracted from the pion electroproduction
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π). A summary of the main results follows in
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(off-shell) particles. Accordingly, one cannot access the
form factor at the exact pion pole in the actual experiment,
as the extrapolation to t → m2

π involves the disallowed
kinematic region of the electroproduction (t < 0). This may
raise some questions about the validity of the extrapolation
from the off-shell results to the on-shell limit. Furthermore,
the EM structure of the off-shell hadron is more compli-
cated than the on-shell hadron and involves more form
factors [12–20]. For instance, the off-shell EM structure of
the pseudoscalar meson [12,13] requires two form factors
[21,22], which are related by the Ward-Takahashi identity
(WTI) [23,24]. The off-shell electromagnetic form factors
for the boson bound state have been calculated in Ref. [25]
using the light-front field theory, and the nonvanishing zero
modes were found to be crucial to preserve the WTI. While
there have been some theoretical studies on the off-shell
pion EM form factors using the chiral perturbation theory
[12], Nambu–Jona-Lasinio model [13], and the continuum
methods for the strong-interaction bound-state problem
[14,15], a further systematic study on the off-shell form
factors of the pion is still required.
In this work, we explore the electromagnetic off-shell

effects for the pion using an exactly solvable manifestly
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of the extrapolation of the off-shell results (t ≠ m2

π) to the on-
shell limit (t ¼ m2
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onlyfor thespacelikeregion(Q2 > 0)butalsofor thetimelike
region (Q2 < 0), providing the three-dimensional (3D)
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as t → m2
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shell limit by defining gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2
πÞ.
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πÞ is found to

be related with the pion charge radius. In Sec. III, we present
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limit (t → m2

π). A summary of the main results follows in
Sec. V. In the Appendix, the explicit derivation of Eqs. (19)
and (20) is briefly summarized.
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pions allow the electromagnetic form factors depicted in
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ð1Þ

where q ¼ p0 − p is the 4-momentum transfer of the
virtual photon at the vertex. This off-shell vertex satisfies
the WTI [12]

qμΓμðp; p0Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ; ð2Þ
where

ΔðpÞ ¼ 1

p2 −m2
π − Πðp2Þ þ {ε

ð3Þ

FIG. 1. ep → e0πþn scattering.

FIG. 2. Electromagnetic charged pion scattering with the form
factors depicted by the black blob.
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
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π is nonzero in the limit of t → m2
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:
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We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
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π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both

PION OFF-SHELL ELECTROMAGNETIC FORM FACTORS: DATA … PHYS. REV. D 100, 116020 (2019)

116020-3

; 



is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
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From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by
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Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
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:
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In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
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Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
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π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ
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second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor
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can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:
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F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼
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6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that
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Thus, the form factor normalization G1ð0; m2
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which can be interpreted as the charge of the pion, is attained
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π) of the initial state since
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πÞΔðpÞ&−1 ¼ 1. However, the extension to
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π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
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: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:
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In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
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Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
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π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:
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In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
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Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:
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∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
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words, since
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πÞ ¼ −
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gðQ2; m2
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where α is determined by expanding ∂
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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Half off-mass-shell form factors : 

is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that
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which can be interpreted as the charge of the pion, is attained
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π) of the initial state since
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is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
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from Eq. (4) that
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πÞG1ð0; p2; m2

πÞ
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πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2
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½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
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π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both

PION OFF-SHELL ELECTROMAGNETIC FORM FACTORS: DATA … PHYS. REV. D 100, 116020 (2019)

116020-3

is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
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π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that
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which can be interpreted as the charge of the pion, is attained
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In the case of the pion initial state being off mass shell but
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onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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pions in a nucleon’s cloud are not real (on-shell) but virtual
(off-shell) particles. Accordingly, one cannot access the
form factor at the exact pion pole in the actual experiment,
as the extrapolation to t → m2

π involves the disallowed
kinematic region of the electroproduction (t < 0). This may
raise some questions about the validity of the extrapolation
from the off-shell results to the on-shell limit. Furthermore,
the EM structure of the off-shell hadron is more compli-
cated than the on-shell hadron and involves more form
factors [12–20]. For instance, the off-shell EM structure of
the pseudoscalar meson [12,13] requires two form factors
[21,22], which are related by the Ward-Takahashi identity
(WTI) [23,24]. The off-shell electromagnetic form factors
for the boson bound state have been calculated in Ref. [25]
using the light-front field theory, and the nonvanishing zero
modes were found to be crucial to preserve the WTI. While
there have been some theoretical studies on the off-shell
pion EM form factors using the chiral perturbation theory
[12], Nambu–Jona-Lasinio model [13], and the continuum
methods for the strong-interaction bound-state problem
[14,15], a further systematic study on the off-shell form
factors of the pion is still required.
In this work, we explore the electromagnetic off-shell

effects for the pion using an exactly solvable manifestly
covariantmodel of (3þ 1)-dimensional fermion field theory
and compare the two off-shell form factors F1ðQ2; tÞ and
F2ðQ2; tÞ with the data extracted from the pion electro-
productionreaction[7,8].Theaimofthispaper is toprovideat
least a clear exampleofdemonstrationdiscussing thevalidity
of the extrapolation of the off-shell results (t ≠ m2

π) to the on-
shell limit (t ¼ m2

π) for the pion.We exhibit F1ð2ÞðQ2; tÞ not
onlyfor thespacelikeregion(Q2 > 0)butalsofor thetimelike
region (Q2 < 0), providing the three-dimensional (3D)
imaging of F1 and F2 in terms of ðQ2; tÞ values.
We organize thiswork as follows. In Sec. II, we review the

formulation of F1 and F2 satisfying the WTI, in which two
form factors are necessary to define the off-shell matrix
elements of the pion EM current. In addition, we provide a
sumrule, coinedhereas themaster equation,whichweobtain
from the WTI that the form factors must obey regardless of
whether they are on shell or off shell.WhileF2ðQ2; tÞ is zero

as t → m2
π , we find a new measurable form factor in the on-

shell limit by defining gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2
πÞ.

Especially, we show that gðQ2 ¼ 0; t ¼ m2
πÞ is found to

be related with the pion charge radius. In Sec. III, we present
the analytic covariant model calculation of F1 and F2

confirming that themodel satisfies themaster equation given
by Eq. (11) as well as the WTI. We also discuss the charge
renormalization for F1ðQ2; tÞ together with the relation
between the coupling gπqq̄ of the πqq̄ vertex and the pion
decay constant fπ . In Sec. IV, we present 3D imaging of
F1ðQ2; tÞ; F2ðQ2; tÞ, and gðQ2; tÞ and compare them with
the available data extracted from the pion electroproduction
reaction for both the off-shell region (t < 0) and the on-shell
limit (t → m2

π). A summary of the main results follows in
Sec. V. In the Appendix, the explicit derivation of Eqs. (19)
and (20) is briefly summarized.

II. OFF-SHELL PION ELECTROMAGNETIC
FORM FACTORS

Using the invariance of the strong interaction under charge
conjugation, one finds that the electromagnetic form factors
of antiparticles are just the negative of those of the particles.
Therefore, theπ0 and η do not have any electromagnetic form
factors even for theoff-mass shell case.However, the charged
pions allow the electromagnetic form factors depicted in
Fig. 2. The most general parametrization of the vertex
function Γμ for the off-shell electromagnetic form factors
of the charged pion is given in terms of the initial and final
4-momenta, pμ and p0μ, as [12]

Γμðp; p0Þ ¼ ðp0 þ pÞμG1ðq2; p2; p02Þ þ qμG2ðq2; p2; p02Þ;

ð1Þ

where q ¼ p0 − p is the 4-momentum transfer of the
virtual photon at the vertex. This off-shell vertex satisfies
the WTI [12]

qμΓμðp; p0Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ; ð2Þ
where

ΔðpÞ ¼ 1

p2 −m2
π − Πðp2Þ þ {ε

ð3Þ

FIG. 1. ep → e0πþn scattering.

FIG. 2. Electromagnetic charged pion scattering with the form
factors depicted by the black blob.
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following
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¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
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π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that
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π; p2Þ: ð5Þ
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πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
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πÞΔðpÞ&−1 ¼ 1. However, the extension to
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π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both

PION OFF-SHELL ELECTROMAGNETIC FORM FACTORS: DATA … PHYS. REV. D 100, 116020 (2019)

116020-3



is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
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from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ
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is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
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the real photon limit (q2 ¼ 0) is given by
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In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
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π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
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Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
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π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains
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:
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the final state being on mass shell, i.e., p2 ¼ t and
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π, Eq. (7) becomes [12]
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where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor
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t −m2
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: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as

F1ðQ2; tÞ¼−
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
ð1þ3yÞ

"
γ−

1

ε
þ1

2
þLogC

#
þ α
C

$
; ð19Þ

and

F2ðQ2; tÞ ¼ −
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
3ð1 − 2xþ yÞLogCþ 2β − α

C

$
; ð20Þ

where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as

F1ð0;m2
πÞ¼−

Ncg2πqq̄
8π2

2

64Logðm2
qÞþγ−1

ε
−7

6

−
2ðm2

π−2m2
qÞ

mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q−m2
π

q tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q−m2

π

q

1

CA

3

75: ð22Þ

As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren

1 ð0; t ¼ m2
πÞ ¼ 1.

FIG. 3. Feynman triangle diagram for the pion off-shell form
factors.
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as

F1ðQ2; tÞ¼−
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
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γ−

1

ε
þ1

2
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#
þ α
C

$
; ð19Þ

and
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Ncg2πqq̄
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dx
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×
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; ð20Þ

where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as

F1ð0;m2
πÞ¼−

Ncg2πqq̄
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren
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πÞ ¼ 1.

FIG. 3. Feynman triangle diagram for the pion off-shell form
factors.
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ
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where γ ≃ 0.577 is the Euler-Mascheroni constant and
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qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,
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π) is obtained as
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and
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mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
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where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as
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where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren

1 ð0; t ¼ m2
πÞ ¼ 1.
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
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where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
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β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as
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πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ
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where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
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andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,
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π) is obtained as
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πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2
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where the loop correction in the square bracket vanishes at
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
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given by
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and the explicit calculation of the triangle loop using
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andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,
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π) is obtained as
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πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
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πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
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where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren
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πÞ ¼ 1.
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as
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where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren

1 ð0; t ¼ m2
πÞ ¼ 1.
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼
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q þ iε come from the intermediate quark and
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mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ
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andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,
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F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as

F1ðQ2; tÞ¼−
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
ð1þ3yÞ

"
γ−

1

ε
þ1

2
þLogC

#
þ α
C

$
; ð19Þ

and

F2ðQ2; tÞ ¼ −
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
3ð1 − 2xþ yÞLogCþ 2β − α

C

$
; ð20Þ

where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as

F1ð0;m2
πÞ¼−

Ncg2πqq̄
8π2

2

64Logðm2
qÞþγ−1

ε
−7

6

−
2ðm2

π−2m2
qÞ

mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q−m2
π

q tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q−m2

π

q

1
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75: ð22Þ

As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren

1 ð0; t ¼ m2
πÞ ¼ 1.

FIG. 3. Feynman triangle diagram for the pion off-shell form
factors.
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ranges 0.12 ≤ mq ≤ 0.16 GeV and the corresponding cou-
pling gπqq̄ are consistent with the values of 2mq=fπ within
15% errors.
We also note that the ratio of F2ðQ2; tÞ to t −m2

π is
nonzero in the limit of t → m2

π, while F2ðQ2; tÞ goes to zero
as t → m2

π . This led us to define the new form factor
gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2

πÞ, which should be measur-
able even in the on-mass-shell limit on par with the usual
charge form factor F1ðQ2; m2

πÞ. In particular, we obtain the
sum rule given by Eq. (11), which relates gðQ2; tÞ to
F1ðQ2; tÞ, and note that the value of gðQ2 ¼ 0; t ¼ m2

πÞ
corresponds to the charge radius of a pion.
According to Eq. (11), however, one needs the infor-

mation of F1ð0; tÞ to determine gðQ2; tÞ, while no data of
F1ðQ2; tÞ exist at Q2 ¼ 0 for t < 0. In this work, we used
a simple covariant model to provide at least a clear
example of demonstration for the simultaneous extraction
of both F1ðQ2; tÞ and gðQ2; tÞ (or F2ðQ2; tÞ). In our
numerical calculations, we show the 3D plots of
F1ð2ÞðQ2; tÞ and gðQ2; tÞ in terms of ðQ2; tÞ values as
shown in Figs. 5 and 6.
Our extracted values of the pion form factors obtained

from the experimental cross section for dσL=dt given in
Table VII of Ref. [7] and the results obtained from the
solvable model with mq ¼ 0.14$ 0.02 GeV are summa-
rized in Table I. The extracted off-shell form factors
FExp
1 ðQ2; tÞ and gExpðQ2; tÞ from the 30 data points in

Table I are plotted in Fig. 8 with respect to Q2 and t. The
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
However, the comparison of the extracted values of the

form factors with covariant model results indicates that
the evolution in Q2 and/or t is not in full agreement
between the extracted vs model form factors. On the one
hand, this is not unexpected as the internal QCD
dynamics of the pion probed by the electroproduction
data should not be restricted only to its valence content,
while the present model for the pion coupling to the quark
and antiquark is just of a pointlike form. A rather
significant difference in the slope of Q2 evolution
between FExp

1 ðQ2; tÞ and FCov
1 ðQ2; tÞ in the top left panel

of Fig. 10 may be an indication of lacking the QCD effect
from the gluon exchange between quark and antiquark
that gets important as Q2 gets larger. The QCD non-
perturbative dynamics for the self-energies of quarks and
gluons, and the vertices of pion-quark, photon-quark, etc.,
deserves further study exploring the 3D imaging of the
off-shell form factors. On the other hand, the analysis of
the electroproduction data by the Chew-Low method
demands the pion-nucleon form factor as input, which
indeed is a simplification and works only close to the pion
pole. Such a limitation may be also reflected in our
extraction of the form factors from the data, which in part

corroborates the difference between the extracted vs
model form factors.
Nevertheless, the overall representation of the trends of

the extracted form factors in the ðQ2; tÞ plane by the present
constituent model indicates that our analysis goes beyond
its obvious limitations. It encourages more in-depth theo-
retical and experimental efforts to reveal the 3D imaging of
the off-shell pion form factors.
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São Paulo (FAPESP) under the thematic Projects
No. 2013/26258-4 and No. 2017/05660-0; and by regular
Project No. 2019/02923-5 (J. P. B. C. M.). C. J. acknowl-
edges the support from Asia Pacific Center for
Theoretical Physics (APCTP) while this work is com-
pleted. This research also used the resources of the
National Energy Research Scientific Computing Center
(NERSC), which is supported by the Office of Science of
the U.S. DOE under Contract No. DE-AC02-05CH11231.

APPENDIX: EXPLICIT CALCULATION
OF EQS. (19) AND (20)

Using the Feynman parametrization for the three propa-
gators, we obtain

1

NkNkþqNp−k
¼

Z
1

0
dx

Z
x

0
dy

2!

½ðkþ EÞ2 − C'3
; ðA1Þ

where E¼ðx−yÞq−yp, C¼ðx−yÞðx−y−1Þq2−yð1−yÞt−
2yðx−yÞq·pþm2

q, and q · p ¼ ðm2
π þQ2 − tÞ=2.

After combining Eqs. (17), (18), and (A1) and shifting
the 4-momentum variable of integration as k0 ¼ kþ E, we
obtain the trace term as

Sμ ¼ −4ðCμ
1k

02 þ Cμ
2Þ; ðA2Þ

where
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as

F1ðQ2; tÞ¼−
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
ð1þ3yÞ

"
γ−

1

ε
þ1

2
þLogC

#
þ α
C

$
; ð19Þ

and

F2ðQ2; tÞ ¼ −
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
3ð1 − 2xþ yÞLogCþ 2β − α

C

$
; ð20Þ

where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as

F1ð0;m2
πÞ¼−

Ncg2πqq̄
8π2

2

64Logðm2
qÞþγ−1

ε
−7

6

−
2ðm2

π−2m2
qÞ

mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q−m2
π

q tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q−m2

π

q

1

CA

3

75: ð22Þ

As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren

1 ð0; t ¼ m2
πÞ ¼ 1.

FIG. 3. Feynman triangle diagram for the pion off-shell form
factors.
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off-shell form factors simultaneously, while the electropro-
duction process cannot directly measure F2ðQ2; tÞ.
Interestingly, however, neither of the two form factors
F1ðQ2; tÞ and gðQ2; tÞ vanishes even in the on-mass-shell
limit t ¼ m2

π .
Furthermore, we can continue elaborating the master

equation given by Eq. (11), taking the derivative in t,

∂
∂t F1ðQ2; tÞ − ∂F1ð0; tÞ

∂t þQ2 ∂gðQ2; tÞ
∂t ¼ 0; ð15Þ

and the master equation given by Eq. (12), taking the
derivative in t,

∂2

∂t∂Q2
F1ðQ2; tÞ þ ∂gðQ2; tÞ

∂t þQ2 ∂2gðQ2; tÞ
∂t∂Q2

¼ 0: ð16Þ

The form factor gðQ2; m2
πÞ is the new observable in the

on-mass-shell limit besides the usual charge form factor
F1ðQ2; m2

πÞ and should be measurable in the experiment of
pion electroproduction. In the next section, we shall
explicitly show all those properties of the off-shell pion
form factors using the exactly solvable manifestly covar-
iant model.

III. MANIFESTLY COVARIANT
MODEL CALCULATION

A. Model description: Theory

The vertex function for the initial off-shell (p2 ¼ t) and
final on-shell (p02 ¼ m2

π) qq̄ bound-state pion coupled to
the virtual photon with the 4-momentum q in the fermion
field theory can be calculated using the tree-level diagram
(see Fig. 3) as

Γμ ¼ iNcg2πqq̄

Z
d4k
ð2πÞ4

Sμ

NkNkþqNp−k
; ð17Þ

where Nc is the number of colors and gπqq̄ corresponds to
the coupling constant of the πqq̄ vertex. The denominators
Nk ¼ k2 −m2

q þ iε, Nkþq¼ðkþqÞ2−m2
qþiε, and Np−k ¼

ðp − kÞ2 −m2
q þ iε come from the intermediate quark and

antiquark propagators with the constituent quark mass
mq ¼ mq̄, respectively. The trace term Sμ in Eq. (17) is
given by

Sμ ¼Tr½γ5ð=kþ=qþmqÞγμð=kþmqÞγ5ð=k−=pþmqÞ&; ð18Þ

and the explicit calculation of the triangle loop using
the Feynman parametrization and the dimensional regu-
larization in dð¼ 4 − 2εÞ dimensions is summarized in
Appendix.
From the definition of Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞþ

qμF2ðQ2; tÞ, we then obtain the two form factors
F1ðQ2; tÞ and F2ðQ2; tÞ as

F1ðQ2; tÞ¼−
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
ð1þ3yÞ

"
γ−

1

ε
þ1

2
þLogC

#
þ α
C

$
; ð19Þ

and

F2ðQ2; tÞ ¼ −
Ncg2πqq̄
8π2

Z
1

0
dx

Z
x

0
dy

×
!
3ð1 − 2xþ yÞLogCþ 2β − α

C

$
; ð20Þ

where γ ≃ 0.577 is the Euler-Mascheroni constant and

α ¼ ð1þ yÞðE2 −m2
qÞ − q · Eþ 2yp · E − yq · p;

β ¼ ð1 − xþ yÞðE2 −m2
qÞ þ ð1 − 2xþ 2yÞp · E

þ ðx − yÞq · p ð21Þ

andC and E are given in Appendix. We should note that the
form factor F2ðQ2; tÞ is free from the UV divergence since
the integration of (1 − 2xþ y) multiplied by the constant
factor (γ − 1=εþ 1=2) gives zero in Eq. (20).
On the other hand, the form factor F1ðQ2; tÞ at (Q2 ¼ 0,

t ¼ m2
π) is obtained as

F1ð0;m2
πÞ¼−

Ncg2πqq̄
8π2

2

64Logðm2
qÞþγ−1

ε
−7

6

−
2ðm2

π−2m2
qÞ

mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q−m2
π

q tan−1
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As the loop correction to the charge form factor
F1ðQ2; t ¼ m2

πÞ must vanish at Q2 ¼ 0, the charge at
Q2 ¼ 0 is given by a subtraction to the contribution by
the loop integral. We thus redefine the renormalized charge
form factor as

Fren
1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2

πÞ&; ð23Þ

where the loop correction in the square bracket vanishes at
Q2 ¼ 0 and t ¼ m2

π and the normalization of the electric
charge is fixed by Fren

1 ð0; t ¼ m2
πÞ ¼ 1.

FIG. 3. Feynman triangle diagram for the pion off-shell form
factors.
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In this subtractive charge renormalization, the coupling
constant gπqq̄ is still arbitrary and could become a free
parameter to find the best fit for the form factors from the
point of view of the phenomenological application. The
coupling constant gπqq̄ is, however, related to the pseudoscalar
coupling of the pion vis-à-vispartially conserved axial current.
Indeed, the coupling gπqq̄ may be determined from the
comparison of the on-shell pion decay constant fπ defined by

h0jq̄γμγ5qjπðpÞi ¼ ifπpμ; ð24Þ

where fπ is obtained by the same model as

fπ ¼ −
Ncgπqq̄
4π2

mq

2

64γ −
1

ε
−
3

2
þ Logðm2

qÞ

þ 2

mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q −m2
π

q
tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q −m2

π

q

1

CA

3

75: ð25Þ

Dividing Eq. (22) by Eq. (25), we obtain

TABLE I. Pion form factors extracted from experimental cross section for dσL=dt given in Table VII of Ref. [7] vs solvable model with
mq ¼ 0.14% 0.02 GeV. The coupling constants, gπqq̄ ¼ ð1.32; 1.20; 1.11Þð2mq=f

Exp
π Þ, are used for mq ¼ ð0.12; 0.14; 0.16Þ GeV,

respectively. ðQ2; tÞ are in units of GeV2, and gðQ2; tÞ is in units of GeV−2.

Q2 −t FExp
1 ðQ2; tÞ FCov

1 ðQ2; tÞ FCov
1 ð0; tÞ gExpðQ2; tÞ gCovðQ2; tÞ

hQ2i ¼ 0.60 GeV2, W ¼ 1.95 GeV
0.526 0.026 0.502% 0.013 0.487þ0.032

−0.039 0.891þ0.019
−0.030 0.740þ0.060

−0.082 0.768−0.024þ0.018
0.576 0.038 0.440% 0.010 0.462þ0.032

−0.039 0.869þ0.022
−0.033 0.745þ0.055

−0.075 0.708−0.016þ0.008
0.612 0.050 0.413% 0.011 0.443þ0.030

−0.038 0.849þ0.024
−0.036 0.712þ0.058

−0.076 0.664−0.010þ0.003
0.631 0.062 0.371% 0.014 0.430þ0.030

−0.036 0.831þ0.026
−0.038 0.729þ0.063

−0.082 0.635−0.007−0.002
0.646 0.074 0.340% 0.022 0.419þ0.030

−0.036 0.814þ0.027
−0.039 0.734þ0.076

−0.095 0.611−0.004−0.005
hQ2i ¼ 0.75 GeV2, W ¼ 1.95 GeV
0.660 0.037 0.397% 0.019 0.435þ0.030

−0.036 0.870þ0.023
−0.032 0.717þ0.063

−0.078 0.660−0.012þ0.005
0.707 0.051 0.360% 0.017 0.414þ0.030

−0.035 0.848þ0.024
−0.036 0.690þ0.058

−0.075 0.613−0.006−0.001
0.753 0.065 0.358% 0.015 0.394þ0.029

−0.034 0.827þ0.026
−0.039 0.623þ0.054

−0.072 0.574−0.003−0.006
0.781 0.079 0.324% 0.018 0.381þ0.027

−0.033 0.807þ0.028
−0.040 0.618þ0.059

−0.074 0.546−0.001−0.009
0.794 0.093 0.325% 0.022 0.371þ0.028

−0.032 0.789þ0.029
−0.041 0.584þ0.065

−0.079 0.526þ0.003
−0.011

hQ2i ¼ 1.00 GeV2, W ¼ 1.95 GeV
0.877 0.060 0.342% 0.014 0.366þ0.027

−0.031 0.834þ0.026
−0.038 0.561þ0.046

−0.059 0.533−0.001−0.006
0.945 0.080 0.327% 0.012 0.343þ0.025

−0.030 0.806þ0.028
−0.040 0.507þ0.042

−0.055 0.490þ0.003
−0.010

1.010 0.100 0.311% 0.012 0.322þ0.024
−0.029 0.781þ0.030

−0.042 0.465þ0.042
−0.053 0.454þ0.006

−0.013
1.050 0.120 0.282% 0.016 0.307þ0.023

−0.027 0.758þ0.031
−0.043 0.453þ0.045

−0.056 0.430þ0.007
−0.015

1.067 0.140 0.233% 0.028 0.297þ0.023
−0.026 0.737þ0.032

−0.043 0.472þ0.057
−0.066 0.412þ0.009

−0.015
hQ2i ¼ 1.60 GeV2, W ¼ 1.95 GeV
1.455 0.135 0.258% 0.010 0.237þ0.018

−0.021 0.742þ0.032
−0.043 0.332þ0.029

−0.037 0.347þ0.010
−0.015

1.532 0.165 0.245% 0.010 0.219þ0.016
−0.020 0.714þ0.032

−0.044 0.306þ0.028
−0.035 0.323þ0.011

−0.016
1.610 0.195 0.222% 0.012 0.201þ0.015

−0.018 0.688þ0.033
−0.044 0.289þ0.028

−0.034 0.302þ0.012
−0.016

1.664 0.225 0.203% 0.013 0.188þ0.014
−0.017 0.665þ0.034

−0.045 0.278þ0.028
−0.035 0.286þ0.012

−0.016
1.702 0.255 0.227% 0.016 0.177þ0.014

−0.015 0.644þ0.034
−0.044 0.245þ0.029

−0.035 0.274þ0.012
−0.017

hQ2i ¼ 1.60 GeV2, W ¼ 2.22 GeV
1.416 0.079 0.270% 0.010 0.259þ0.019

−0.022 0.807þ0.028
−0.040 0.379þ0.027

−0.035 0.387þ0.006
−0.012

1.513 0.112 0.258% 0.010 0.235þ0.018
−0.021 0.767þ0.030

−0.043 0.336þ0.027
−0.035 0.351þ0.009

−0.014
1.593 0.139 0.251% 0.010 0.217þ0.016

−0.019 0.738þ0.032
−0.043 0.306þ0.026

−0.034 0.327þ0.010
−0.015

1.667 0.166 0.241% 0.012 0.201þ0.015
−0.018 0.713þ0.033

−0.044 0.283þ0.027
−0.033 0.307þ0.011

−0.016
1.763 0.215 0.200% 0.018 0.179þ0.013

−0.017 0.672þ0.034
−0.044 0.268þ0.029

−0.035 0.280þ0.011
−0.017

hQ2i ¼ 2.45 GeV2, W ¼ 2.22 GeV
2.215 0.145 0.188% 0.008 0.146þ0.010

−0.012 0.732þ0.033
−0.043 0.246þ0.018

−0.023 0.265þ0.010
−0.014

2.279 0.202 0.178% 0.008 0.129þ0.009
−0.011 0.682þ0.034

−0.044 0.221þ0.019
−0.023 0.243þ0.011

−0.015
2.411 0.245 0.163% 0.009 0.109þ0.008

−0.009 0.650þ0.037
−0.044 0.202þ0.019

−0.022 0.224þ0.011
−0.014

2.539 0.288 0.156% 0.011 0.092þ0.006
−0.007 0.622þ0.034

−0.043 0.184þ0.017
−0.022 0.209þ0.011

−0.014
2.703 0.365 0.150% 0.016 0.068þ0.004

−0.005 0.579þ0.033
−0.043 0.159þ0.018

−0.022 0.189þ0.011
−0.014
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In this subtractive charge renormalization, the coupling
constant gπqq̄ is still arbitrary and could become a free
parameter to find the best fit for the form factors from the
point of view of the phenomenological application. The
coupling constant gπqq̄ is, however, related to the pseudoscalar
coupling of the pion vis-à-vispartially conserved axial current.
Indeed, the coupling gπqq̄ may be determined from the
comparison of the on-shell pion decay constant fπ defined by

h0jq̄γμγ5qjπðpÞi ¼ ifπpμ; ð24Þ

where fπ is obtained by the same model as

fπ ¼ −
Ncgπqq̄
4π2

mq

2

64γ −
1

ε
−
3

2
þ Logðm2

qÞ

þ 2

mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q −m2
π

q
tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q −m2

π

q

1

CA

3

75: ð25Þ

Dividing Eq. (22) by Eq. (25), we obtain

TABLE I. Pion form factors extracted from experimental cross section for dσL=dt given in Table VII of Ref. [7] vs solvable model with
mq ¼ 0.14% 0.02 GeV. The coupling constants, gπqq̄ ¼ ð1.32; 1.20; 1.11Þð2mq=f

Exp
π Þ, are used for mq ¼ ð0.12; 0.14; 0.16Þ GeV,

respectively. ðQ2; tÞ are in units of GeV2, and gðQ2; tÞ is in units of GeV−2.

Q2 −t FExp
1 ðQ2; tÞ FCov

1 ðQ2; tÞ FCov
1 ð0; tÞ gExpðQ2; tÞ gCovðQ2; tÞ

hQ2i ¼ 0.60 GeV2, W ¼ 1.95 GeV
0.526 0.026 0.502% 0.013 0.487þ0.032

−0.039 0.891þ0.019
−0.030 0.740þ0.060

−0.082 0.768−0.024þ0.018
0.576 0.038 0.440% 0.010 0.462þ0.032

−0.039 0.869þ0.022
−0.033 0.745þ0.055

−0.075 0.708−0.016þ0.008
0.612 0.050 0.413% 0.011 0.443þ0.030

−0.038 0.849þ0.024
−0.036 0.712þ0.058

−0.076 0.664−0.010þ0.003
0.631 0.062 0.371% 0.014 0.430þ0.030

−0.036 0.831þ0.026
−0.038 0.729þ0.063

−0.082 0.635−0.007−0.002
0.646 0.074 0.340% 0.022 0.419þ0.030

−0.036 0.814þ0.027
−0.039 0.734þ0.076

−0.095 0.611−0.004−0.005
hQ2i ¼ 0.75 GeV2, W ¼ 1.95 GeV
0.660 0.037 0.397% 0.019 0.435þ0.030

−0.036 0.870þ0.023
−0.032 0.717þ0.063

−0.078 0.660−0.012þ0.005
0.707 0.051 0.360% 0.017 0.414þ0.030

−0.035 0.848þ0.024
−0.036 0.690þ0.058

−0.075 0.613−0.006−0.001
0.753 0.065 0.358% 0.015 0.394þ0.029

−0.034 0.827þ0.026
−0.039 0.623þ0.054

−0.072 0.574−0.003−0.006
0.781 0.079 0.324% 0.018 0.381þ0.027

−0.033 0.807þ0.028
−0.040 0.618þ0.059

−0.074 0.546−0.001−0.009
0.794 0.093 0.325% 0.022 0.371þ0.028

−0.032 0.789þ0.029
−0.041 0.584þ0.065

−0.079 0.526þ0.003
−0.011

hQ2i ¼ 1.00 GeV2, W ¼ 1.95 GeV
0.877 0.060 0.342% 0.014 0.366þ0.027

−0.031 0.834þ0.026
−0.038 0.561þ0.046

−0.059 0.533−0.001−0.006
0.945 0.080 0.327% 0.012 0.343þ0.025

−0.030 0.806þ0.028
−0.040 0.507þ0.042

−0.055 0.490þ0.003
−0.010

1.010 0.100 0.311% 0.012 0.322þ0.024
−0.029 0.781þ0.030

−0.042 0.465þ0.042
−0.053 0.454þ0.006

−0.013
1.050 0.120 0.282% 0.016 0.307þ0.023

−0.027 0.758þ0.031
−0.043 0.453þ0.045

−0.056 0.430þ0.007
−0.015

1.067 0.140 0.233% 0.028 0.297þ0.023
−0.026 0.737þ0.032

−0.043 0.472þ0.057
−0.066 0.412þ0.009

−0.015
hQ2i ¼ 1.60 GeV2, W ¼ 1.95 GeV
1.455 0.135 0.258% 0.010 0.237þ0.018

−0.021 0.742þ0.032
−0.043 0.332þ0.029

−0.037 0.347þ0.010
−0.015

1.532 0.165 0.245% 0.010 0.219þ0.016
−0.020 0.714þ0.032

−0.044 0.306þ0.028
−0.035 0.323þ0.011

−0.016
1.610 0.195 0.222% 0.012 0.201þ0.015

−0.018 0.688þ0.033
−0.044 0.289þ0.028

−0.034 0.302þ0.012
−0.016

1.664 0.225 0.203% 0.013 0.188þ0.014
−0.017 0.665þ0.034

−0.045 0.278þ0.028
−0.035 0.286þ0.012

−0.016
1.702 0.255 0.227% 0.016 0.177þ0.014

−0.015 0.644þ0.034
−0.044 0.245þ0.029

−0.035 0.274þ0.012
−0.017

hQ2i ¼ 1.60 GeV2, W ¼ 2.22 GeV
1.416 0.079 0.270% 0.010 0.259þ0.019

−0.022 0.807þ0.028
−0.040 0.379þ0.027

−0.035 0.387þ0.006
−0.012

1.513 0.112 0.258% 0.010 0.235þ0.018
−0.021 0.767þ0.030

−0.043 0.336þ0.027
−0.035 0.351þ0.009

−0.014
1.593 0.139 0.251% 0.010 0.217þ0.016

−0.019 0.738þ0.032
−0.043 0.306þ0.026

−0.034 0.327þ0.010
−0.015

1.667 0.166 0.241% 0.012 0.201þ0.015
−0.018 0.713þ0.033

−0.044 0.283þ0.027
−0.033 0.307þ0.011

−0.016
1.763 0.215 0.200% 0.018 0.179þ0.013

−0.017 0.672þ0.034
−0.044 0.268þ0.029

−0.035 0.280þ0.011
−0.017

hQ2i ¼ 2.45 GeV2, W ¼ 2.22 GeV
2.215 0.145 0.188% 0.008 0.146þ0.010

−0.012 0.732þ0.033
−0.043 0.246þ0.018

−0.023 0.265þ0.010
−0.014

2.279 0.202 0.178% 0.008 0.129þ0.009
−0.011 0.682þ0.034

−0.044 0.221þ0.019
−0.023 0.243þ0.011

−0.015
2.411 0.245 0.163% 0.009 0.109þ0.008

−0.009 0.650þ0.037
−0.044 0.202þ0.019

−0.022 0.224þ0.011
−0.014

2.539 0.288 0.156% 0.011 0.092þ0.006
−0.007 0.622þ0.034

−0.043 0.184þ0.017
−0.022 0.209þ0.011

−0.014
2.703 0.365 0.150% 0.016 0.068þ0.004

−0.005 0.579þ0.033
−0.043 0.159þ0.018

−0.022 0.189þ0.011
−0.014
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In this subtractive charge renormalization, the coupling
constant gπqq̄ is still arbitrary and could become a free
parameter to find the best fit for the form factors from the
point of view of the phenomenological application. The
coupling constant gπqq̄ is, however, related to the pseudoscalar
coupling of the pion vis-à-vispartially conserved axial current.
Indeed, the coupling gπqq̄ may be determined from the
comparison of the on-shell pion decay constant fπ defined by

h0jq̄γμγ5qjπðpÞi ¼ ifπpμ; ð24Þ

where fπ is obtained by the same model as

fπ ¼ −
Ncgπqq̄
4π2

mq

2

64γ −
1

ε
−
3

2
þ Logðm2

qÞ

þ 2

mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q −m2
π

q
tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q −m2

π

q

1
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3
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Dividing Eq. (22) by Eq. (25), we obtain

TABLE I. Pion form factors extracted from experimental cross section for dσL=dt given in Table VII of Ref. [7] vs solvable model with
mq ¼ 0.14% 0.02 GeV. The coupling constants, gπqq̄ ¼ ð1.32; 1.20; 1.11Þð2mq=f

Exp
π Þ, are used for mq ¼ ð0.12; 0.14; 0.16Þ GeV,

respectively. ðQ2; tÞ are in units of GeV2, and gðQ2; tÞ is in units of GeV−2.

Q2 −t FExp
1 ðQ2; tÞ FCov

1 ðQ2; tÞ FCov
1 ð0; tÞ gExpðQ2; tÞ gCovðQ2; tÞ

hQ2i ¼ 0.60 GeV2, W ¼ 1.95 GeV
0.526 0.026 0.502% 0.013 0.487þ0.032

−0.039 0.891þ0.019
−0.030 0.740þ0.060

−0.082 0.768−0.024þ0.018
0.576 0.038 0.440% 0.010 0.462þ0.032

−0.039 0.869þ0.022
−0.033 0.745þ0.055

−0.075 0.708−0.016þ0.008
0.612 0.050 0.413% 0.011 0.443þ0.030

−0.038 0.849þ0.024
−0.036 0.712þ0.058

−0.076 0.664−0.010þ0.003
0.631 0.062 0.371% 0.014 0.430þ0.030

−0.036 0.831þ0.026
−0.038 0.729þ0.063

−0.082 0.635−0.007−0.002
0.646 0.074 0.340% 0.022 0.419þ0.030

−0.036 0.814þ0.027
−0.039 0.734þ0.076

−0.095 0.611−0.004−0.005
hQ2i ¼ 0.75 GeV2, W ¼ 1.95 GeV
0.660 0.037 0.397% 0.019 0.435þ0.030

−0.036 0.870þ0.023
−0.032 0.717þ0.063

−0.078 0.660−0.012þ0.005
0.707 0.051 0.360% 0.017 0.414þ0.030

−0.035 0.848þ0.024
−0.036 0.690þ0.058

−0.075 0.613−0.006−0.001
0.753 0.065 0.358% 0.015 0.394þ0.029

−0.034 0.827þ0.026
−0.039 0.623þ0.054

−0.072 0.574−0.003−0.006
0.781 0.079 0.324% 0.018 0.381þ0.027

−0.033 0.807þ0.028
−0.040 0.618þ0.059

−0.074 0.546−0.001−0.009
0.794 0.093 0.325% 0.022 0.371þ0.028

−0.032 0.789þ0.029
−0.041 0.584þ0.065

−0.079 0.526þ0.003
−0.011

hQ2i ¼ 1.00 GeV2, W ¼ 1.95 GeV
0.877 0.060 0.342% 0.014 0.366þ0.027

−0.031 0.834þ0.026
−0.038 0.561þ0.046

−0.059 0.533−0.001−0.006
0.945 0.080 0.327% 0.012 0.343þ0.025

−0.030 0.806þ0.028
−0.040 0.507þ0.042

−0.055 0.490þ0.003
−0.010

1.010 0.100 0.311% 0.012 0.322þ0.024
−0.029 0.781þ0.030

−0.042 0.465þ0.042
−0.053 0.454þ0.006

−0.013
1.050 0.120 0.282% 0.016 0.307þ0.023

−0.027 0.758þ0.031
−0.043 0.453þ0.045

−0.056 0.430þ0.007
−0.015

1.067 0.140 0.233% 0.028 0.297þ0.023
−0.026 0.737þ0.032

−0.043 0.472þ0.057
−0.066 0.412þ0.009

−0.015
hQ2i ¼ 1.60 GeV2, W ¼ 1.95 GeV
1.455 0.135 0.258% 0.010 0.237þ0.018

−0.021 0.742þ0.032
−0.043 0.332þ0.029

−0.037 0.347þ0.010
−0.015

1.532 0.165 0.245% 0.010 0.219þ0.016
−0.020 0.714þ0.032

−0.044 0.306þ0.028
−0.035 0.323þ0.011

−0.016
1.610 0.195 0.222% 0.012 0.201þ0.015

−0.018 0.688þ0.033
−0.044 0.289þ0.028

−0.034 0.302þ0.012
−0.016

1.664 0.225 0.203% 0.013 0.188þ0.014
−0.017 0.665þ0.034

−0.045 0.278þ0.028
−0.035 0.286þ0.012

−0.016
1.702 0.255 0.227% 0.016 0.177þ0.014

−0.015 0.644þ0.034
−0.044 0.245þ0.029

−0.035 0.274þ0.012
−0.017

hQ2i ¼ 1.60 GeV2, W ¼ 2.22 GeV
1.416 0.079 0.270% 0.010 0.259þ0.019

−0.022 0.807þ0.028
−0.040 0.379þ0.027

−0.035 0.387þ0.006
−0.012

1.513 0.112 0.258% 0.010 0.235þ0.018
−0.021 0.767þ0.030

−0.043 0.336þ0.027
−0.035 0.351þ0.009

−0.014
1.593 0.139 0.251% 0.010 0.217þ0.016

−0.019 0.738þ0.032
−0.043 0.306þ0.026

−0.034 0.327þ0.010
−0.015

1.667 0.166 0.241% 0.012 0.201þ0.015
−0.018 0.713þ0.033

−0.044 0.283þ0.027
−0.033 0.307þ0.011

−0.016
1.763 0.215 0.200% 0.018 0.179þ0.013

−0.017 0.672þ0.034
−0.044 0.268þ0.029

−0.035 0.280þ0.011
−0.017

hQ2i ¼ 2.45 GeV2, W ¼ 2.22 GeV
2.215 0.145 0.188% 0.008 0.146þ0.010

−0.012 0.732þ0.033
−0.043 0.246þ0.018

−0.023 0.265þ0.010
−0.014

2.279 0.202 0.178% 0.008 0.129þ0.009
−0.011 0.682þ0.034

−0.044 0.221þ0.019
−0.023 0.243þ0.011

−0.015
2.411 0.245 0.163% 0.009 0.109þ0.008

−0.009 0.650þ0.037
−0.044 0.202þ0.019

−0.022 0.224þ0.011
−0.014

2.539 0.288 0.156% 0.011 0.092þ0.006
−0.007 0.622þ0.034

−0.043 0.184þ0.017
−0.022 0.209þ0.011

−0.014
2.703 0.365 0.150% 0.016 0.068þ0.004

−0.005 0.579þ0.033
−0.043 0.159þ0.018

−0.022 0.189þ0.011
−0.014
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gπqq̄
2mq

¼ F1ð0; m2
πÞ

fπ
þOðεÞ: ð26Þ

This may motivate us to relate gπqq̄ with mq and
fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren

1 ð0; m2
πÞ=f

Exp
π with Fren

1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
π .

B. Model description: Numerical results

The exactly solvable model with the half-off-shell form
factors given by Eqs. (19) and (20) is quantitatively
explored in this subsection. In our numerical calculation,
we tried to find the best fits of the form factor Fren

1 ðQ2; tÞ
compared to the experimental data FExp

1 ðQ2; tÞ for both
the off-shell pion (t ≠ m2

π) (see Table I) and the on-shell
pion (t ¼ m2

π) as we shall show in Fig. 9 by adjusting our
model parameters ðmq; gπqq̄Þ. We found the optimum
ranges of quark masses, 0.12 ≤ mq ≤ 0.16 GeV, and the
best fits for the coupling constants, gπqq̄ ¼ ð1.32; 1.20;
1.11Þð2mq=f

Exp
π Þ for mq ¼ ð0.12; 0.14; 0.16Þ GeV, respec-

tively. That is, our phenomenological best-fit coupling
constants gπqq̄ are not much different from the values of
2mq=f

Exp
π , and we check the sensitivity of the coupling gπqq̄

for given quark mass as we shall show in Fig. 9. From now
on, we shall denote our results for the renormalized form
factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
In Fig. 4, we provide the explicit proof of the WTI given

by Eq. (8) with the two off-shell form factors F1 and
F2 computed independently using mq ¼ 0.16 GeV and
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ with a fixed t ¼ −m2

π value for
−1 ≤ Q2 ≤ 1 GeV2. Note here that we cover both timelike
ðQ2 ¼ −q2 < 0Þ and spacelike (Q2 > 0) regions. The time-
like result is obtained from the analytic continuation by
changing Q2 to −Q2 in the form factors of the spacelike
region and vice versa. The solid, dashed, and dotted lines
represent the results of jðm2

π−tÞ½F1ð0;tÞ−F1ðQ2;tÞ&j,
Re½ðm2

π−tÞ½F1ð0;tÞ−F1ðQ2;tÞ&&, and Im½ðm2
π−tÞ½F1ð0;tÞ−

F1ðQ2;tÞ&&, respectively. Our independent calculations
of jq2F2ðQ2; tÞj (circle), Re½q2F2ðQ2; tÞ& (square), and
Im½q2F2ðQ2; tÞ& (diamond) shown in Fig. 4 prove explicitly
that our model calculation satisfies theWTI given by Eq. (8).
The kink in Fig. 4 of the timelike region is the point

where the threshold starts at q2 ¼ 4m2
q. At q2 ¼ 4m2

q, the
imaginary parts of the form factors start to develop, where
the qq̄ continuum begins in the model. Although our
analytic covariant model is too simple to illustrate the
timelike regionQ2 < 0 lacking the more realistic feature of
the vector meson resonances observed experimentally (see,

e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
The overall landscape of the half-on-shell form factors,

F1ðQ2; tÞ andF2ðQ2; tÞ, obtained frommq ¼ 0.16 GeVand
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ for both spacelike and timelike

regions are shown in Fig. 5, in which the modulus and
the real and imaginary parts are presented. The figure shows
the 3D plots ofF1ðQ2; tÞ (upper panel) andF2ðQ2; tÞ (lower
panel) for −2 ≤ Q2 ≤ 2 GeV2 and −m2

π ≤ t ≤ m2
π GeV2.

Left, middle, and right panels represent the results of Re½Fi&,
Im½Fi&, and the modulus jFij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe½Fi&Þ2 þ ðIm½Fi&Þ2

p

(i ¼ 1, 2), respectively. The imaginary parts of both F1

andF2 start to appear at q2 ¼ 4m2
q regardless of the off-shell

value t. For the form factor F2ðQ2; tÞ, it clearly satisfies
F2ðQ2; tÞ ¼ 0 at the on-shell limit t ¼ m2

π in accordance
with theWTI given byEq. (8). However,F2 is no longer zero
for t ≠ m2

π values and shows quite different cusp behavior
from F1 in the timelike region as t gets away from the on-
shell t ¼ m2

π value. This may suggest that the different
extrapolation methods from t < 0 to t ¼ m2

π are required for
F1 and F2, with the proviso that the model lacks the more
realistic feature of the vector meson resonances observed
experimentally in the timelike region. Despite this limitation,
our results illustrate that it may be possible to extract the
two form factors by probing different aspects of the pion
structure.
The landscapes of the half-off-shell spacelike form

factors given in Fig. 5 are shown in more detail in
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This may motivate us to relate gπqq̄ with mq and
fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren

1 ð0; m2
πÞ=f

Exp
π with Fren

1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
π .

B. Model description: Numerical results

The exactly solvable model with the half-off-shell form
factors given by Eqs. (19) and (20) is quantitatively
explored in this subsection. In our numerical calculation,
we tried to find the best fits of the form factor Fren

1 ðQ2; tÞ
compared to the experimental data FExp

1 ðQ2; tÞ for both
the off-shell pion (t ≠ m2

π) (see Table I) and the on-shell
pion (t ¼ m2

π) as we shall show in Fig. 9 by adjusting our
model parameters ðmq; gπqq̄Þ. We found the optimum
ranges of quark masses, 0.12 ≤ mq ≤ 0.16 GeV, and the
best fits for the coupling constants, gπqq̄ ¼ ð1.32; 1.20;
1.11Þð2mq=f

Exp
π Þ for mq ¼ ð0.12; 0.14; 0.16Þ GeV, respec-

tively. That is, our phenomenological best-fit coupling
constants gπqq̄ are not much different from the values of
2mq=f

Exp
π , and we check the sensitivity of the coupling gπqq̄

for given quark mass as we shall show in Fig. 9. From now
on, we shall denote our results for the renormalized form
factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
In Fig. 4, we provide the explicit proof of the WTI given

by Eq. (8) with the two off-shell form factors F1 and
F2 computed independently using mq ¼ 0.16 GeV and
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ with a fixed t ¼ −m2

π value for
−1 ≤ Q2 ≤ 1 GeV2. Note here that we cover both timelike
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like result is obtained from the analytic continuation by
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of jq2F2ðQ2; tÞj (circle), Re½q2F2ðQ2; tÞ& (square), and
Im½q2F2ðQ2; tÞ& (diamond) shown in Fig. 4 prove explicitly
that our model calculation satisfies theWTI given by Eq. (8).
The kink in Fig. 4 of the timelike region is the point

where the threshold starts at q2 ¼ 4m2
q. At q2 ¼ 4m2

q, the
imaginary parts of the form factors start to develop, where
the qq̄ continuum begins in the model. Although our
analytic covariant model is too simple to illustrate the
timelike regionQ2 < 0 lacking the more realistic feature of
the vector meson resonances observed experimentally (see,

e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
The overall landscape of the half-on-shell form factors,

F1ðQ2; tÞ andF2ðQ2; tÞ, obtained frommq ¼ 0.16 GeVand
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ for both spacelike and timelike

regions are shown in Fig. 5, in which the modulus and
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the 3D plots ofF1ðQ2; tÞ (upper panel) andF2ðQ2; tÞ (lower
panel) for −2 ≤ Q2 ≤ 2 GeV2 and −m2
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andF2 start to appear at q2 ¼ 4m2
q regardless of the off-shell

value t. For the form factor F2ðQ2; tÞ, it clearly satisfies
F2ðQ2; tÞ ¼ 0 at the on-shell limit t ¼ m2

π in accordance
with theWTI given byEq. (8). However,F2 is no longer zero
for t ≠ m2

π values and shows quite different cusp behavior
from F1 in the timelike region as t gets away from the on-
shell t ¼ m2

π value. This may suggest that the different
extrapolation methods from t < 0 to t ¼ m2

π are required for
F1 and F2, with the proviso that the model lacks the more
realistic feature of the vector meson resonances observed
experimentally in the timelike region. Despite this limitation,
our results illustrate that it may be possible to extract the
two form factors by probing different aspects of the pion
structure.
The landscapes of the half-off-shell spacelike form

factors given in Fig. 5 are shown in more detail in
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to discuss the off-mass-shell aspect of the charged pion
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from the general WTI given by Eq. (2).
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This may motivate us to relate gπqq̄ with mq and
fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren

1 ð0; m2
πÞ=f

Exp
π with Fren

1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
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factors given by Eqs. (19) and (20) is quantitatively
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best fits for the coupling constants, gπqq̄ ¼ ð1.32; 1.20;
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tively. That is, our phenomenological best-fit coupling
constants gπqq̄ are not much different from the values of
2mq=f

Exp
π , and we check the sensitivity of the coupling gπqq̄

for given quark mass as we shall show in Fig. 9. From now
on, we shall denote our results for the renormalized form
factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
In Fig. 4, we provide the explicit proof of the WTI given

by Eq. (8) with the two off-shell form factors F1 and
F2 computed independently using mq ¼ 0.16 GeV and
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π Þ with a fixed t ¼ −m2
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that our model calculation satisfies theWTI given by Eq. (8).
The kink in Fig. 4 of the timelike region is the point

where the threshold starts at q2 ¼ 4m2
q. At q2 ¼ 4m2

q, the
imaginary parts of the form factors start to develop, where
the qq̄ continuum begins in the model. Although our
analytic covariant model is too simple to illustrate the
timelike regionQ2 < 0 lacking the more realistic feature of
the vector meson resonances observed experimentally (see,

e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
The overall landscape of the half-on-shell form factors,

F1ðQ2; tÞ andF2ðQ2; tÞ, obtained frommq ¼ 0.16 GeVand
gπqq̄ ¼ 1.11ð2mq=f
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π in accordance
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from F1 in the timelike region as t gets away from the on-
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π are required for
F1 and F2, with the proviso that the model lacks the more
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This may motivate us to relate gπqq̄ with mq and
fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren
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1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
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B. Model description: Numerical results

The exactly solvable model with the half-off-shell form
factors given by Eqs. (19) and (20) is quantitatively
explored in this subsection. In our numerical calculation,
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constants gπqq̄ are not much different from the values of
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Exp
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factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
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e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
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π are required for
F1 and F2, with the proviso that the model lacks the more
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This may motivate us to relate gπqq̄ with mq and
fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren

1 ð0; m2
πÞ=f

Exp
π with Fren

1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
π .

B. Model description: Numerical results

The exactly solvable model with the half-off-shell form
factors given by Eqs. (19) and (20) is quantitatively
explored in this subsection. In our numerical calculation,
we tried to find the best fits of the form factor Fren

1 ðQ2; tÞ
compared to the experimental data FExp

1 ðQ2; tÞ for both
the off-shell pion (t ≠ m2

π) (see Table I) and the on-shell
pion (t ¼ m2

π) as we shall show in Fig. 9 by adjusting our
model parameters ðmq; gπqq̄Þ. We found the optimum
ranges of quark masses, 0.12 ≤ mq ≤ 0.16 GeV, and the
best fits for the coupling constants, gπqq̄ ¼ ð1.32; 1.20;
1.11Þð2mq=f

Exp
π Þ for mq ¼ ð0.12; 0.14; 0.16Þ GeV, respec-

tively. That is, our phenomenological best-fit coupling
constants gπqq̄ are not much different from the values of
2mq=f

Exp
π , and we check the sensitivity of the coupling gπqq̄

for given quark mass as we shall show in Fig. 9. From now
on, we shall denote our results for the renormalized form
factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
In Fig. 4, we provide the explicit proof of the WTI given

by Eq. (8) with the two off-shell form factors F1 and
F2 computed independently using mq ¼ 0.16 GeV and
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ with a fixed t ¼ −m2

π value for
−1 ≤ Q2 ≤ 1 GeV2. Note here that we cover both timelike
ðQ2 ¼ −q2 < 0Þ and spacelike (Q2 > 0) regions. The time-
like result is obtained from the analytic continuation by
changing Q2 to −Q2 in the form factors of the spacelike
region and vice versa. The solid, dashed, and dotted lines
represent the results of jðm2

π−tÞ½F1ð0;tÞ−F1ðQ2;tÞ&j,
Re½ðm2

π−tÞ½F1ð0;tÞ−F1ðQ2;tÞ&&, and Im½ðm2
π−tÞ½F1ð0;tÞ−

F1ðQ2;tÞ&&, respectively. Our independent calculations
of jq2F2ðQ2; tÞj (circle), Re½q2F2ðQ2; tÞ& (square), and
Im½q2F2ðQ2; tÞ& (diamond) shown in Fig. 4 prove explicitly
that our model calculation satisfies theWTI given by Eq. (8).
The kink in Fig. 4 of the timelike region is the point

where the threshold starts at q2 ¼ 4m2
q. At q2 ¼ 4m2

q, the
imaginary parts of the form factors start to develop, where
the qq̄ continuum begins in the model. Although our
analytic covariant model is too simple to illustrate the
timelike regionQ2 < 0 lacking the more realistic feature of
the vector meson resonances observed experimentally (see,

e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
The overall landscape of the half-on-shell form factors,

F1ðQ2; tÞ andF2ðQ2; tÞ, obtained frommq ¼ 0.16 GeVand
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ for both spacelike and timelike

regions are shown in Fig. 5, in which the modulus and
the real and imaginary parts are presented. The figure shows
the 3D plots ofF1ðQ2; tÞ (upper panel) andF2ðQ2; tÞ (lower
panel) for −2 ≤ Q2 ≤ 2 GeV2 and −m2

π ≤ t ≤ m2
π GeV2.

Left, middle, and right panels represent the results of Re½Fi&,
Im½Fi&, and the modulus jFij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe½Fi&Þ2 þ ðIm½Fi&Þ2

p

(i ¼ 1, 2), respectively. The imaginary parts of both F1

andF2 start to appear at q2 ¼ 4m2
q regardless of the off-shell

value t. For the form factor F2ðQ2; tÞ, it clearly satisfies
F2ðQ2; tÞ ¼ 0 at the on-shell limit t ¼ m2

π in accordance
with theWTI given byEq. (8). However,F2 is no longer zero
for t ≠ m2

π values and shows quite different cusp behavior
from F1 in the timelike region as t gets away from the on-
shell t ¼ m2

π value. This may suggest that the different
extrapolation methods from t < 0 to t ¼ m2

π are required for
F1 and F2, with the proviso that the model lacks the more
realistic feature of the vector meson resonances observed
experimentally in the timelike region. Despite this limitation,
our results illustrate that it may be possible to extract the
two form factors by probing different aspects of the pion
structure.
The landscapes of the half-off-shell spacelike form

factors given in Fig. 5 are shown in more detail in
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addition to mq for the best fit of the model calculation
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factor Fren
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fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren
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1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
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factors given by Eqs. (19) and (20) is quantitatively
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π) as we shall show in Fig. 9 by adjusting our
model parameters ðmq; gπqq̄Þ. We found the optimum
ranges of quark masses, 0.12 ≤ mq ≤ 0.16 GeV, and the
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π Þ for mq ¼ ð0.12; 0.14; 0.16Þ GeV, respec-

tively. That is, our phenomenological best-fit coupling
constants gπqq̄ are not much different from the values of
2mq=f

Exp
π , and we check the sensitivity of the coupling gπqq̄

for given quark mass as we shall show in Fig. 9. From now
on, we shall denote our results for the renormalized form
factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
In Fig. 4, we provide the explicit proof of the WTI given

by Eq. (8) with the two off-shell form factors F1 and
F2 computed independently using mq ¼ 0.16 GeV and
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π value for
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F1ðQ2;tÞ&&, respectively. Our independent calculations
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Im½q2F2ðQ2; tÞ& (diamond) shown in Fig. 4 prove explicitly
that our model calculation satisfies theWTI given by Eq. (8).
The kink in Fig. 4 of the timelike region is the point

where the threshold starts at q2 ¼ 4m2
q. At q2 ¼ 4m2

q, the
imaginary parts of the form factors start to develop, where
the qq̄ continuum begins in the model. Although our
analytic covariant model is too simple to illustrate the
timelike regionQ2 < 0 lacking the more realistic feature of
the vector meson resonances observed experimentally (see,

e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
The overall landscape of the half-on-shell form factors,

F1ðQ2; tÞ andF2ðQ2; tÞ, obtained frommq ¼ 0.16 GeVand
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π in accordance
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π value. This may suggest that the different
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π are required for
F1 and F2, with the proviso that the model lacks the more
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our results illustrate that it may be possible to extract the
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compared to the experimental data and examine whether
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F1 and F2, with the proviso that the model lacks the more
realistic feature of the vector meson resonances observed
experimentally in the timelike region. Despite this limitation,
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gπqq̄
2mq

¼ F1ð0; m2
πÞ

fπ
þOðεÞ: ð26Þ

This may motivate us to relate gπqq̄ with mq and
fExpπ ¼ 130 MeV, by taking the right hand side of Eq. (26)
as Fren

1 ð0; m2
πÞ=f

Exp
π with Fren

1 ð0; m2
πÞ ¼ 1. In our numerical

calculation, however,we take gπqq̄ as another free parameter in
addition to mq for the best fit of the model calculation
compared to the experimental data and examine whether
the attained value of gπqq̄ is consistent with the value
of 2mq=f

Exp
π .

B. Model description: Numerical results

The exactly solvable model with the half-off-shell form
factors given by Eqs. (19) and (20) is quantitatively
explored in this subsection. In our numerical calculation,
we tried to find the best fits of the form factor Fren

1 ðQ2; tÞ
compared to the experimental data FExp

1 ðQ2; tÞ for both
the off-shell pion (t ≠ m2

π) (see Table I) and the on-shell
pion (t ¼ m2

π) as we shall show in Fig. 9 by adjusting our
model parameters ðmq; gπqq̄Þ. We found the optimum
ranges of quark masses, 0.12 ≤ mq ≤ 0.16 GeV, and the
best fits for the coupling constants, gπqq̄ ¼ ð1.32; 1.20;
1.11Þð2mq=f

Exp
π Þ for mq ¼ ð0.12; 0.14; 0.16Þ GeV, respec-

tively. That is, our phenomenological best-fit coupling
constants gπqq̄ are not much different from the values of
2mq=f

Exp
π , and we check the sensitivity of the coupling gπqq̄

for given quark mass as we shall show in Fig. 9. From now
on, we shall denote our results for the renormalized form
factor Fren

1 ðQ2; tÞ as F1ðQ2; tÞ for convenience.
In Fig. 4, we provide the explicit proof of the WTI given

by Eq. (8) with the two off-shell form factors F1 and
F2 computed independently using mq ¼ 0.16 GeV and
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ with a fixed t ¼ −m2

π value for
−1 ≤ Q2 ≤ 1 GeV2. Note here that we cover both timelike
ðQ2 ¼ −q2 < 0Þ and spacelike (Q2 > 0) regions. The time-
like result is obtained from the analytic continuation by
changing Q2 to −Q2 in the form factors of the spacelike
region and vice versa. The solid, dashed, and dotted lines
represent the results of jðm2

π−tÞ½F1ð0;tÞ−F1ðQ2;tÞ&j,
Re½ðm2

π−tÞ½F1ð0;tÞ−F1ðQ2;tÞ&&, and Im½ðm2
π−tÞ½F1ð0;tÞ−

F1ðQ2;tÞ&&, respectively. Our independent calculations
of jq2F2ðQ2; tÞj (circle), Re½q2F2ðQ2; tÞ& (square), and
Im½q2F2ðQ2; tÞ& (diamond) shown in Fig. 4 prove explicitly
that our model calculation satisfies theWTI given by Eq. (8).
The kink in Fig. 4 of the timelike region is the point

where the threshold starts at q2 ¼ 4m2
q. At q2 ¼ 4m2

q, the
imaginary parts of the form factors start to develop, where
the qq̄ continuum begins in the model. Although our
analytic covariant model is too simple to illustrate the
timelike regionQ2 < 0 lacking the more realistic feature of
the vector meson resonances observed experimentally (see,

e.g., Refs. [26,27]), it may provide at least a theoretical tool
to discuss the off-mass-shell aspect of the charged pion
form factors involved in the electroproduction process,
satisfying the master equation given by Eq. (11) derived
from the general WTI given by Eq. (2).
The overall landscape of the half-on-shell form factors,

F1ðQ2; tÞ andF2ðQ2; tÞ, obtained frommq ¼ 0.16 GeVand
gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ for both spacelike and timelike

regions are shown in Fig. 5, in which the modulus and
the real and imaginary parts are presented. The figure shows
the 3D plots ofF1ðQ2; tÞ (upper panel) andF2ðQ2; tÞ (lower
panel) for −2 ≤ Q2 ≤ 2 GeV2 and −m2

π ≤ t ≤ m2
π GeV2.

Left, middle, and right panels represent the results of Re½Fi&,
Im½Fi&, and the modulus jFij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe½Fi&Þ2 þ ðIm½Fi&Þ2

p

(i ¼ 1, 2), respectively. The imaginary parts of both F1

andF2 start to appear at q2 ¼ 4m2
q regardless of the off-shell

value t. For the form factor F2ðQ2; tÞ, it clearly satisfies
F2ðQ2; tÞ ¼ 0 at the on-shell limit t ¼ m2

π in accordance
with theWTI given byEq. (8). However,F2 is no longer zero
for t ≠ m2

π values and shows quite different cusp behavior
from F1 in the timelike region as t gets away from the on-
shell t ¼ m2

π value. This may suggest that the different
extrapolation methods from t < 0 to t ¼ m2

π are required for
F1 and F2, with the proviso that the model lacks the more
realistic feature of the vector meson resonances observed
experimentally in the timelike region. Despite this limitation,
our results illustrate that it may be possible to extract the
two form factors by probing different aspects of the pion
structure.
The landscapes of the half-off-shell spacelike form

factors given in Fig. 5 are shown in more detail in
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
electron current. We note, however, that the ratio of
F2ðQ2; tÞ to t −m2

π is nonzero in the limit of t → m2
π ,

although F2ðQ2; tÞ itself goes to zero as t → m2
π . To exhibit

this more clearly, let us define the new form factor

gðQ2; tÞ≡ F2ðQ2; tÞ
t −m2

π
: ð10Þ

Then, the off-shell form factor sum rule given by Eq. (8)
can be rewritten as

F1ðQ2; tÞ − F1ð0; tÞ þQ2gðQ2; tÞ ¼ 0: ð11Þ

Taking the derivative of Eq. (11) with respect to Q2, one
finds the following evolution equation:

∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ

where α is determined by expanding ∂
∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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Fig. 6, as it is relevant for our forthcoming analysis of the
experimental data. The figure represents the 3D plots of
F1ðQ2; tÞ (top left), −F2ðQ2; tÞ (top right), gðQ2; tÞ (bot-
tom left), and the master equation (bottom right) given by
Eq. (11) for the momentum transfer region 0 ≤ Q2 ≤
3 GeV2 and m2

π ≥ t ≥ −0.4 GeV2. While the form factor

F2ðQ2; tÞ goes to zero as t → m2
π, the form factor gðQ2; tÞ is

nonzero even in the on-mass-shell limit. Furthermore,
F1ð0; tÞ shows some dependencies on t, which is necessary
to be known in the case of extracting F2ðQ2; tÞ from the
pion electroproduction data. In particular, the value of
gðQ2 ¼ 0; t ¼ m2

πÞ corresponds to the charge radius of a
pion. The covariant and analytical model is checked against
the fulfillment of the master equations, i.e., the sum rules
given by Eqs. (11), (12), (15), and (16), and we display the
fulfillment of Eq. (11) in the figure (bottom right) as an
explicit illustration. The verification of these master equa-
tions gives not only an indirect check on the fulfillment of
the WTI by the model but also our numerical accuracy.

IV. EXTRACTION OF THE OFF-SHELL
FORM FACTORS FROM THE

EXPERIMENTAL CROSS SECTION

A. Extraction of half-off-shell pion form factors

The off-shell form factor F1ðQ2; tÞ can be extracted from
the exclusive cross section for 1Hðe; e0; πþÞn in the kin-
ematical region of small t, such that the t-channel process
dominates near the pion pole at t ¼ m2

π [7,8]. To minimize
background contributions, it is also necessary to separate
out the longitudinal cross section σL, via the Rosenbluth
separation depending on the polarization states of the virtual
photon in terms of the longitudinal differential cross section

FIG. 5. The 3D plots of F1ðQ2; tÞ (upper panel) and F2ðQ2; tÞ (lower panel) for −2 ≤ Q2 ≤ 2 GeV2 and −m2
π ≤ t ≤ m2

π GeV2. Left,
middle, and right panels represent the results of Re½Fi&, Im½Fi&, and jFij (i ¼ 1, 2), respectively. The used model parameters are
mq ¼ 0.16 GeV and gπqq̄ ¼ 1.11ð2mq=f

Exp
π Þ.

FIG. 6. The 3D plots of F1ðQ2; tÞ (top left), F2ðQ2; tÞ
(top right), gðQ2; tÞ (bottom left), and the sum rule (bottom
right) given by Eq. (11) for the spacelike momentum
transfer region 0 ≤ Q2 ≤ 3 GeV2 and m2

π ≥ t ≥ −0.4 GeV2.
The used model parameters are mq ¼ 0.16 GeV and gπqq̄ ¼
1.11ð2mq=f

Exp
π Þ.
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(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2−m2

pÞ2þQ4þ2Q2ðW2þm2
pÞ

q
:

ð28Þ

For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2

π

Λ2
π − t

#
; ð29Þ

where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2−m2

pÞ2þQ4þ2Q2ðW2þm2
pÞ

q
:

ð28Þ

For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2

π

Λ2
π − t

#
; ð29Þ

where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2−m2

pÞ2þQ4þ2Q2ðW2þm2
pÞ

q
:

ð28Þ

For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2

π

Λ2
π − t

#
; ð29Þ

where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2−m2

pÞ2þQ4þ2Q2ðW2þm2
pÞ

q
:

ð28Þ

For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2

π

Λ2
π − t

#
; ð29Þ

where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ
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For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2
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Λ2
π − t

#
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where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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In this subtractive charge renormalization, the coupling
constant gπqq̄ is still arbitrary and could become a free
parameter to find the best fit for the form factors from the
point of view of the phenomenological application. The
coupling constant gπqq̄ is, however, related to the pseudoscalar
coupling of the pion vis-à-vispartially conserved axial current.
Indeed, the coupling gπqq̄ may be determined from the
comparison of the on-shell pion decay constant fπ defined by

h0jq̄γμγ5qjπðpÞi ¼ ifπpμ; ð24Þ

where fπ is obtained by the same model as

fπ ¼ −
Ncgπqq̄
4π2

mq

2

64γ −
1

ε
−
3

2
þ Logðm2

qÞ

þ 2

mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q −m2
π

q
tan−1

0

B@
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q −m2

π

q

1

CA

3

75: ð25Þ

Dividing Eq. (22) by Eq. (25), we obtain

TABLE I. Pion form factors extracted from experimental cross section for dσL=dt given in Table VII of Ref. [7] vs solvable model with
mq ¼ 0.14% 0.02 GeV. The coupling constants, gπqq̄ ¼ ð1.32; 1.20; 1.11Þð2mq=f

Exp
π Þ, are used for mq ¼ ð0.12; 0.14; 0.16Þ GeV,

respectively. ðQ2; tÞ are in units of GeV2, and gðQ2; tÞ is in units of GeV−2.

Q2 −t FExp
1 ðQ2; tÞ FCov

1 ðQ2; tÞ FCov
1 ð0; tÞ gExpðQ2; tÞ gCovðQ2; tÞ

hQ2i ¼ 0.60 GeV2, W ¼ 1.95 GeV
0.526 0.026 0.502% 0.013 0.487þ0.032

−0.039 0.891þ0.019
−0.030 0.740þ0.060

−0.082 0.768−0.024þ0.018
0.576 0.038 0.440% 0.010 0.462þ0.032

−0.039 0.869þ0.022
−0.033 0.745þ0.055

−0.075 0.708−0.016þ0.008
0.612 0.050 0.413% 0.011 0.443þ0.030

−0.038 0.849þ0.024
−0.036 0.712þ0.058

−0.076 0.664−0.010þ0.003
0.631 0.062 0.371% 0.014 0.430þ0.030

−0.036 0.831þ0.026
−0.038 0.729þ0.063

−0.082 0.635−0.007−0.002
0.646 0.074 0.340% 0.022 0.419þ0.030

−0.036 0.814þ0.027
−0.039 0.734þ0.076

−0.095 0.611−0.004−0.005
hQ2i ¼ 0.75 GeV2, W ¼ 1.95 GeV
0.660 0.037 0.397% 0.019 0.435þ0.030

−0.036 0.870þ0.023
−0.032 0.717þ0.063

−0.078 0.660−0.012þ0.005
0.707 0.051 0.360% 0.017 0.414þ0.030

−0.035 0.848þ0.024
−0.036 0.690þ0.058

−0.075 0.613−0.006−0.001
0.753 0.065 0.358% 0.015 0.394þ0.029

−0.034 0.827þ0.026
−0.039 0.623þ0.054

−0.072 0.574−0.003−0.006
0.781 0.079 0.324% 0.018 0.381þ0.027

−0.033 0.807þ0.028
−0.040 0.618þ0.059

−0.074 0.546−0.001−0.009
0.794 0.093 0.325% 0.022 0.371þ0.028

−0.032 0.789þ0.029
−0.041 0.584þ0.065

−0.079 0.526þ0.003
−0.011

hQ2i ¼ 1.00 GeV2, W ¼ 1.95 GeV
0.877 0.060 0.342% 0.014 0.366þ0.027

−0.031 0.834þ0.026
−0.038 0.561þ0.046

−0.059 0.533−0.001−0.006
0.945 0.080 0.327% 0.012 0.343þ0.025

−0.030 0.806þ0.028
−0.040 0.507þ0.042

−0.055 0.490þ0.003
−0.010

1.010 0.100 0.311% 0.012 0.322þ0.024
−0.029 0.781þ0.030

−0.042 0.465þ0.042
−0.053 0.454þ0.006

−0.013
1.050 0.120 0.282% 0.016 0.307þ0.023

−0.027 0.758þ0.031
−0.043 0.453þ0.045

−0.056 0.430þ0.007
−0.015

1.067 0.140 0.233% 0.028 0.297þ0.023
−0.026 0.737þ0.032

−0.043 0.472þ0.057
−0.066 0.412þ0.009

−0.015
hQ2i ¼ 1.60 GeV2, W ¼ 1.95 GeV
1.455 0.135 0.258% 0.010 0.237þ0.018

−0.021 0.742þ0.032
−0.043 0.332þ0.029

−0.037 0.347þ0.010
−0.015

1.532 0.165 0.245% 0.010 0.219þ0.016
−0.020 0.714þ0.032

−0.044 0.306þ0.028
−0.035 0.323þ0.011

−0.016
1.610 0.195 0.222% 0.012 0.201þ0.015

−0.018 0.688þ0.033
−0.044 0.289þ0.028

−0.034 0.302þ0.012
−0.016

1.664 0.225 0.203% 0.013 0.188þ0.014
−0.017 0.665þ0.034

−0.045 0.278þ0.028
−0.035 0.286þ0.012

−0.016
1.702 0.255 0.227% 0.016 0.177þ0.014

−0.015 0.644þ0.034
−0.044 0.245þ0.029

−0.035 0.274þ0.012
−0.017

hQ2i ¼ 1.60 GeV2, W ¼ 2.22 GeV
1.416 0.079 0.270% 0.010 0.259þ0.019

−0.022 0.807þ0.028
−0.040 0.379þ0.027

−0.035 0.387þ0.006
−0.012

1.513 0.112 0.258% 0.010 0.235þ0.018
−0.021 0.767þ0.030

−0.043 0.336þ0.027
−0.035 0.351þ0.009

−0.014
1.593 0.139 0.251% 0.010 0.217þ0.016

−0.019 0.738þ0.032
−0.043 0.306þ0.026

−0.034 0.327þ0.010
−0.015

1.667 0.166 0.241% 0.012 0.201þ0.015
−0.018 0.713þ0.033

−0.044 0.283þ0.027
−0.033 0.307þ0.011

−0.016
1.763 0.215 0.200% 0.018 0.179þ0.013

−0.017 0.672þ0.034
−0.044 0.268þ0.029

−0.035 0.280þ0.011
−0.017

hQ2i ¼ 2.45 GeV2, W ¼ 2.22 GeV
2.215 0.145 0.188% 0.008 0.146þ0.010

−0.012 0.732þ0.033
−0.043 0.246þ0.018

−0.023 0.265þ0.010
−0.014

2.279 0.202 0.178% 0.008 0.129þ0.009
−0.011 0.682þ0.034

−0.044 0.221þ0.019
−0.023 0.243þ0.011

−0.015
2.411 0.245 0.163% 0.009 0.109þ0.008

−0.009 0.650þ0.037
−0.044 0.202þ0.019

−0.022 0.224þ0.011
−0.014

2.539 0.288 0.156% 0.011 0.092þ0.006
−0.007 0.622þ0.034

−0.043 0.184þ0.017
−0.022 0.209þ0.011

−0.014
2.703 0.365 0.150% 0.016 0.068þ0.004

−0.005 0.579þ0.033
−0.043 0.159þ0.018

−0.022 0.189þ0.011
−0.014

PION OFF-SHELL ELECTROMAGNETIC FORM FACTORS: DATA … PHYS. REV. D 100, 116020 (2019)

116020-5



(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2−m2

pÞ2þQ4þ2Q2ðW2þm2
pÞ

q
:

ð28Þ

For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2

π

Λ2
π − t

#
; ð29Þ

where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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FIG. 7. The 3D plot of the master equation (11) built with our
experimental extraction of the off-shell pion form factors. In
computing Eq. (11), we use the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ,

and gExpðQ2; tÞ given in Table I.
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(dσL=dt), the transverse differential cross section (dσT=dt),
and the two other differential cross sections due to interfer-
ence (dσLT=dt and dσTT=dt).
Since the minimum physical value of −t is nonzero and

increases with the increasing value of Q2 and decreasing
value of the invariant massW of the produced pion-nucleon
system, more reliable extraction of the on-shell pion form
factor FπðQ2Þ ¼ F1ðQ2; t ¼ m2

πÞ should be performed at
smaller −t and higher W (for a fixed Q2) as discussed in
Ref. [8]. In Ref. [8], ample discussions were devoted to the
reliability issue of the Chew-Low extrapolation method and
the use of the Regge model presented in Ref. [28] as well as
the encouragement on additional models that one may use
for the task of the form factor extraction.
The basis of the Chew-Low method is the Born-term

model formula for the pion-pole contribution to σL, where
the pion-pole contribution to σL is given by

N
dσL
dt

¼ 4ℏcðeGπNNÞ2
−tQ2

ðt −m2
πÞ2

F2
πðQ2Þ: ð27Þ

Here, e2=ð4πℏcÞ ¼ 1=137, and the factor N, which
depends on the flux factor used in the definition of
dσL=dt, is given by

N¼ 32πðW2−m2
pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2−m2

pÞ2þQ4þ2Q2ðW2þm2
pÞ

q
:

ð28Þ

For the form factor GπNNðtÞ, we follow the usual monopole
type of parametrization

GπNNðtÞ ¼ GπNNðm2
πÞ
"
Λ2
π −m2

π

Λ2
π − t

#
; ð29Þ

where GπNNðm2
πÞ ¼ 13.4 and Λπ ¼ 0.80 GeV have been

taken in the extraction of Fπ from the Jefferson Lab (JLAB)
experiment [8]. We use the same values of GπNNðm2

πÞ and
Λπ in our numerical extraction of the off-shell form factors
F1ðQ2; tÞ and F2ðQ2; tÞ [or gðQ2; tÞ].
The experimental data for dσL=dt given in Table VII of

Ref. [7] are used for the extraction of the off-shell form
factor FExp

1 ðQ2; tÞ using Eqs. (27)–(29), with the theory
input from our model calculation presented in the previous
section, Sec. III. Since there are no experimental data
available for F1ðQ2 ¼ 0; tÞ, we extract FExp

2 ðQ2; tÞ [or
gExpðQ2; tÞ] from the WTI using the values of FCov

1 ðQ2 ¼
0; tÞ obtained from the manifestly covariant model,
i.e., gExpðQ2; tÞ ¼ ½FCov

1 ð0; tÞ − FExp
1 ðQ2; tÞ&=Q2. For the

comparison of the covariant model with the experimental
data, we use mq ¼ ð0.14' 0.02Þ GeV, checking the sen-
sitivity of our covariant model calculation. The experimen-
tally extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ and the corresponding results from the

covariant model obtained from using mq ¼ ð0.14'
0.02Þ GeV are summarized in Table I, in which ðQ2;−tÞ
values are classified into six different sets in terms of
average hQ2i and the invariant mass W following Ref. [7].
To check the consistency of our experimental extraction of
the form factors, we computed the master equation using
the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ, and gExpðQ2; tÞ given

in Table I. The attained 3D plot of the master equation (11)
is shown in Fig. 7. As we have already used Eq. (11) to
obtain gExpðQ2; tÞ, this may be regarded as an obvious
cross-check just for the purpose of illustration.
In Table I, we note that the Q2 and/or −t evolution of the

extracted values of FExp
1 ðQ2; tÞ is somewhat different from

the result of F1ðQ2; tÞ due to our covariant analytic model
calculation. This difference may not be a surprise, though,
not only due to the simplicity of the covariant analytic
model but also due to the limitation of the Chew-Low
extrapolation involving the pion-nucleon form factor in
crossing the disallowed kinematic region t > 0 of the
electroproduction process. While the improvement of the
model deserves interest with respect to the QCD dynamics
of the pion, it suggests the direct extraction of the off-shell
pion form factors in lieu of the extrapolation procedure
involving the disallowed kinematic region from the differ-
ential cross section of the electroproduction data.
The extracted off-shell form factors FExp

1 ðQ2; tÞ and
gExpðQ2; tÞ from the 30 data points in Table I are plotted
in Fig. 8 with respect to Q2 and t. The overall momentum
dependences of Q2 and t resemble the results of the
covariant analytic model as shown in Fig. 6. While the
data seem to exhibit the stronger variation with respect to
Q2 and t than the model result as also noted in Table I, the
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
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FIG. 7. The 3D plot of the master equation (11) built with our
experimental extraction of the off-shell pion form factors. In
computing Eq. (11), we use the values of FExp

1 ðQ2; tÞ, FCov
1 ð0; tÞ,

and gExpðQ2; tÞ given in Table I.
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is the full renormalized propagator [12] and the renormalized
pion self-energy Πðp2Þ is constrained by the on-mass-shell
condition Πðm2

πÞ ¼ 0.
From the WTI given by Eq. (2), we get the following

constraint on the off-shell form factors G1 and G2:

ðp02 − p2ÞG1ðq2; p2; p02Þ þ q2G2ðq2; p2; p02Þ
¼ Δ−1ðp0Þ − Δ−1ðpÞ: ð4Þ

In particular, for the case of real photons (i.e., q2 ¼ 0) and
for the half-off-shell form factor, namely, the final state
being on mass shell p02 ¼ m2

π with Δ−1ðp0Þ ¼ 0, one finds
from Eq. (4) that

Δ−1ðpÞ ¼ ðp2 −m2
πÞG1ð0; p2; m2

πÞ
¼ ðp2 −m2

πÞG1ð0; m2
π; p2Þ: ð5Þ

Thus, the form factor normalization G1ð0; m2
π; m2

πÞ ¼ 1,
which can be interpreted as the charge of the pion, is attained
in the on-shell limit (p2 ¼ m2

π) of the initial state since
limp2→m2

π
½ðp2 −m2

πÞΔðpÞ&−1 ¼ 1. However, the extension to
G1ð0; m2

π; p2Þ ¼ 1 for the half-off-shell case (p2 ≠ m2
π)

is in general not possible due to the nonvanishing Πðp2Þ
term. It is also interesting to note that G1ðq2; p2; p02Þ ¼
G1ðq2; p02; p2Þ and G2ðq2; p2; p02Þ ¼ −G2ðq2; p02; p2Þ,
respectively, from Eq. (4) and the time-reversal invariance
of the strong interaction.
From Eq. (4), the off-shell form factor G1ðq2; p2; p02Þ in

the real photon limit (q2 ¼ 0) is given by

G1ð0; p2; p02Þ ¼ Δ−1ðp0Þ − Δ−1ðpÞ
p02 − p2

: ð6Þ

Substituting Eq. (6) back into Eq. (4), one obtains

G2ðq2;p2;p02Þ¼ðp02−p2Þ½G1ð0;p2;p02Þ−G1ðq2;p2;p02Þ&
q2

:

ð7Þ

In the case of the pion initial state being off mass shell but
the final state being on mass shell, i.e., p2 ¼ t and
p02 ¼ m2

π, Eq. (7) becomes [12]

F2ðQ2; tÞ ¼ t −m2
π

Q2
½F1ð0; tÞ − F1ðQ2; tÞ&; ð8Þ

where FiðQ2; tÞ≡Giðq2; t; m2
πÞ (i ¼ 1, 2) and Q2 ¼ −q2.

We note that F2ðQ2; tÞ ¼ 0 if both initial and final pions are
onmass shell (i.e.,p2 ¼ p02 ¼ m2

π), which is consistent with
the antisymmetric property of G2, i.e., G2ðQ2; p2; p02Þ ¼
−G2ðQ2; p02; p2Þ. The normalization of F1 is fixed by
requiring F1ðQ2 ¼ 0; t ¼ m2

πÞ ¼ 1 as we discussed earlier.
The renormalized pion self-energy ΠðtÞ is also related

to the off-shell pion form factor F1ðQ2 ¼ 0; tÞ as ΠðtÞ ¼
ðt −m2

πÞ½1 − F1ð0; tÞ&, assuring the on-mass-shell condition
Πðt ¼ m2

πÞ ¼ 0 mentioned earlier. We have checked the
chiral perturbation theory up to one loop [12] and confirmed
that the off-shell pion form factors obtained in Ref. [12]
satisfy the general formula given by Eq. (8), as it should be.
From Eqs. (1) and (8), the half-on-shell (p02 ¼ m2

π) and
half-off-shell (p2 ¼ t < 0) pion-photon vertex can be
effectively given by

Γμ ¼ ðp0 þ pÞμF1ðQ2; tÞ

þ qμ
ðt −m2

πÞ
Q2

½F1ð0; tÞ − F1ðQ2; tÞ&: ð9Þ

In the elastic electron scattering, the contraction of the
second term in Eq. (9) with the electron current vanishes
due to the current conservation. It suggests that F2ðQ2; tÞ
given by Eq. (8) cannot be directly measured in the
electroproduction process due to the transversality of the
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t −m2

π
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∂
∂Q2

F1ðQ2; tÞ þ gðQ2; tÞ þQ2 ∂gðQ2; tÞ
∂Q2

¼ 0: ð12Þ

We should note that gðQ2 ¼ 0; t ¼ m2
πÞ is associated with

the charge radius of the pion elastic form factor. In other
words, since

gðQ2 ¼ 0; m2
πÞ ¼ −

∂
∂Q2

F1ðQ2 ¼ 0; m2
πÞ ¼

1

6
hr2πi ð13Þ

in the on-mass shell limit, t ¼ m2
π , and at Q2 ¼ 0, we get

the on-mass shell solution for gðQ2; tÞ,

gðQ2; m2
πÞ ¼

1

6
hr2πiþ αQ2 þ ' ' ' ; ð14Þ
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∂Q2 F1ðQ2; tÞ and

∂
∂Q2 gðQ2; tÞ in Q2 around Q2 ¼ 0. Effectively, the master
equation given by Eq. (11) allows us to extract both
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B. Comparison of extracted vs model form factors

The on-shell pion form factors F1ðQ2; m2
πÞ (black lines)

and gðQ2; m2
πÞ (blue lines) from the covariant model for the

spacelike region Q2 > 0 are shown in Fig. 9 and compared
with the extracted values of FExp

1 ðQ2; t ¼ m2
πÞ (black data)

and gExpðQ2; t ¼ m2
πÞ ¼ ½1 − FExp

1 ðQ2; t ¼ m2
πÞ%=Q2 (blue

data). The model parameters in Fig. 9 are mq ¼
ð0.12; 0.16Þ GeV using the variation of the couplings
gπqq̄¼ð1.32&0.04;1.11&0.04Þð2mq=f

Exp
π Þ, respectively.

The solid and dashed lines represent the results obtained
from mq ¼ 0.12 and 0.16 GeV using the upper and lower
limits of the corresponding gπqq̄. We should note that while
the upper (lower) line of F1ðQ2; m2

πÞ corresponds to the
lower (upper) limit of gπqq̄, the upper (lower) line of
gðQ2; m2

πÞ corresponds to the upper (lower) limit of gπqq̄.
Unlike the form factor F2ðQ2; tÞ, the form factor gðQ2; tÞ
does not vanish in the on-shell limit. We note that the
current particle data group [29] average rExpπ ¼

ffiffiffiffiffiffiffiffi
hr2πi

p
¼

ð0.672& 0.008Þ fm for the rms value of the pion
charge radius corresponds to gExpðQ2¼0;m2

πÞ¼ð1.953&
0.023ÞGeV−2. Although the more realistic model than the
present one may be required to predict gðQ2; m2

πÞ more
accurately, we note that the form factor gðQ2; m2

πÞ should
be regarded as the physical observable in the on-mass-shell

limit on par with the charge form factor F1ðQ2; m2
πÞ. In this

respect, it is interesting to observe that gExpðQ2; t ¼ m2
πÞ ¼

½1 − FExp
1 ðQ2; t ¼ m2

πÞ%=Q2 exhibits a rather large fluc-
tuation near Q2 ¼ 0, which may reflect a correspondingly
large uncertainty in determining the pion charge radius.
The extracted off-shell pion form factors F1ðQ2; tÞ and

gðQ2; tÞ given in Table I and those obtained from the
covariant model are compared in Fig. 10. The top panel
shows the Q2 dependence of F1ðQ2; tÞ (left) and gðQ2; tÞ
(right) collecting all the data in Table I regardless of t
values, while bottom panel shows the t dependences of
F1ðQ2; tÞ (left) and gðQ2; tÞ (right) collecting all the data in
Table I regardless of Q2 values. The black and blue data
represent, respectively, the extracted data from the JLAB
experiment [7] and the results of the covariant model
obtained from Eqs. (19) and (20) using the quark mass
muðdÞ ¼ 0.14& 0.02 GeV. A rather significant difference
in the slope of Q2 evolution between FExp

1 ðQ2; tÞ and
FCov
1 ðQ2; tÞ in the top left panel of Fig. 10 may be

understood from the QCD effect on FExp
1 ðQ2; tÞ from the

gluon exchange between the quark and antiquark that gets
important asQ2 gets larger, while the solvable model result
FCov
1 ðQ2; tÞ does not accommodate this perturbative QCD

feature. It is interesting to see, however, that the newly
introduced form factor gðQ2; tÞ defined by Eq. (10) appears
independent of this feature. The model-independent
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and gðQ2; m2
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region 0 ≤ Q2 ≤ 2 GeV2 compared with the experimental data
for FExp

1 (black data) and gExp (blue data). The used model
parameters are mq ¼ ð0.12; 0.16Þ GeV using the variation of the
couplings gπqq̄ ¼ ð1.32& 0.04; 1.11& 0.04Þð2mq=f

Exp
π Þ, respec-

tively, and we show only the upper and lower limits of gπqq̄.
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couplings gπqq̄ ¼ ð1.32& 0.04; 1.11& 0.04Þð2mq=f
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tively, and we show only the upper and lower limits of gπqq̄.
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charge radius corresponds to gExpðQ2¼0;m2

πÞ¼ð1.953&
0.023ÞGeV−2. Although the more realistic model than the
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πÞ should
be regarded as the physical observable in the on-mass-shell

limit on par with the charge form factor F1ðQ2; m2
πÞ. In this

respect, it is interesting to observe that gExpðQ2; t ¼ m2
πÞ ¼

½1 − FExp
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πÞ%=Q2 exhibits a rather large fluc-
tuation near Q2 ¼ 0, which may reflect a correspondingly
large uncertainty in determining the pion charge radius.
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gðQ2; tÞ given in Table I and those obtained from the
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shows the Q2 dependence of F1ðQ2; tÞ (left) and gðQ2; tÞ
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values, while bottom panel shows the t dependences of
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represent, respectively, the extracted data from the JLAB
experiment [7] and the results of the covariant model
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muðdÞ ¼ 0.14& 0.02 GeV. A rather significant difference
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understood from the QCD effect on FExp
1 ðQ2; tÞ from the

gluon exchange between the quark and antiquark that gets
important asQ2 gets larger, while the solvable model result
FCov
1 ðQ2; tÞ does not accommodate this perturbative QCD

feature. It is interesting to see, however, that the newly
introduced form factor gðQ2; tÞ defined by Eq. (10) appears
independent of this feature. The model-independent
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πÞ corresponds to the upper (lower) limit of gπqq̄.
Unlike the form factor F2ðQ2; tÞ, the form factor gðQ2; tÞ
does not vanish in the on-shell limit. We note that the
current particle data group [29] average rExpπ ¼

ffiffiffiffiffiffiffiffi
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¼

ð0.672& 0.008Þ fm for the rms value of the pion
charge radius corresponds to gExpðQ2¼0;m2

πÞ¼ð1.953&
0.023ÞGeV−2. Although the more realistic model than the
present one may be required to predict gðQ2; m2

πÞ more
accurately, we note that the form factor gðQ2; m2

πÞ should
be regarded as the physical observable in the on-mass-shell

limit on par with the charge form factor F1ðQ2; m2
πÞ. In this

respect, it is interesting to observe that gExpðQ2; t ¼ m2
πÞ ¼

½1 − FExp
1 ðQ2; t ¼ m2

πÞ%=Q2 exhibits a rather large fluc-
tuation near Q2 ¼ 0, which may reflect a correspondingly
large uncertainty in determining the pion charge radius.
The extracted off-shell pion form factors F1ðQ2; tÞ and

gðQ2; tÞ given in Table I and those obtained from the
covariant model are compared in Fig. 10. The top panel
shows the Q2 dependence of F1ðQ2; tÞ (left) and gðQ2; tÞ
(right) collecting all the data in Table I regardless of t
values, while bottom panel shows the t dependences of
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in the slope of Q2 evolution between FExp

1 ðQ2; tÞ and
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important asQ2 gets larger, while the solvable model result
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1 ðQ2; tÞ does not accommodate this perturbative QCD

feature. It is interesting to see, however, that the newly
introduced form factor gðQ2; tÞ defined by Eq. (10) appears
independent of this feature. The model-independent
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gluon exchange between the quark and antiquark that gets
important asQ2 gets larger, while the solvable model result
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feature. It is interesting to see, however, that the newly
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πÞ (blue lines) from the covariant model for the

spacelike region Q2 > 0 are shown in Fig. 9 and compared
with the extracted values of FExp

1 ðQ2; t ¼ m2
πÞ (black data)

and gExpðQ2; t ¼ m2
πÞ ¼ ½1 − FExp
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data). The model parameters in Fig. 9 are mq ¼
ð0.12; 0.16Þ GeV using the variation of the couplings
gπqq̄¼ð1.32&0.04;1.11&0.04Þð2mq=f

Exp
π Þ, respectively.

The solid and dashed lines represent the results obtained
from mq ¼ 0.12 and 0.16 GeV using the upper and lower
limits of the corresponding gπqq̄. We should note that while
the upper (lower) line of F1ðQ2; m2

πÞ corresponds to the
lower (upper) limit of gπqq̄, the upper (lower) line of
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πÞ corresponds to the upper (lower) limit of gπqq̄.
Unlike the form factor F2ðQ2; tÞ, the form factor gðQ2; tÞ
does not vanish in the on-shell limit. We note that the
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0.023ÞGeV−2. Although the more realistic model than the
present one may be required to predict gðQ2; m2

πÞ more
accurately, we note that the form factor gðQ2; m2

πÞ should
be regarded as the physical observable in the on-mass-shell

limit on par with the charge form factor F1ðQ2; m2
πÞ. In this

respect, it is interesting to observe that gExpðQ2; t ¼ m2
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πÞ%=Q2 exhibits a rather large fluc-
tuation near Q2 ¼ 0, which may reflect a correspondingly
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gðQ2; tÞ given in Table I and those obtained from the
covariant model are compared in Fig. 10. The top panel
shows the Q2 dependence of F1ðQ2; tÞ (left) and gðQ2; tÞ
(right) collecting all the data in Table I regardless of t
values, while bottom panel shows the t dependences of
F1ðQ2; tÞ (left) and gðQ2; tÞ (right) collecting all the data in
Table I regardless of Q2 values. The black and blue data
represent, respectively, the extracted data from the JLAB
experiment [7] and the results of the covariant model
obtained from Eqs. (19) and (20) using the quark mass
muðdÞ ¼ 0.14& 0.02 GeV. A rather significant difference
in the slope of Q2 evolution between FExp
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understood from the QCD effect on FExp
1 ðQ2; tÞ from the

gluon exchange between the quark and antiquark that gets
important asQ2 gets larger, while the solvable model result
FCov
1 ðQ2; tÞ does not accommodate this perturbative QCD

feature. It is interesting to see, however, that the newly
introduced form factor gðQ2; tÞ defined by Eq. (10) appears
independent of this feature. The model-independent
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experimental extraction of F1ð0; tÞ appears indispensable
to make the more accurate assessment on the gðQ2; tÞ
behavior without involving any model dependence.

V. CONCLUSIONS

In this work, we investigated the pion electro-
magnetic half-off-shell form factors F1ðQ2; tÞ and
F2ðQ2; tÞ using the manifestly covariant fermion field
theory model.
In this simple covariant model, since our result for

F1ðQ2; t ¼ m2
πÞ includes a UV divergence 1=ε term of

the dimensional regularization, we fixed the normalization

of the electric charge via the subtractive renormalization,
i.e., Fren

1 ðQ2; tÞ ¼ 1þ ½F1ðQ2; tÞ − F1ð0; m2
πÞ&, as the loop

correction to the charge form factor must vanish at Q2 ¼ 0.
We used Fren

1 ðQ2; tÞ as our off-shell form factor F1ðQ2; tÞ
throughout the analysis. Our result for F2ðQ2; tÞ is, how-
ever, free from the UV divergence. In our covariant model
with the constituent quark mass mq as a free parameter, we
note that the πqq̄ coupling constant gπqq̄ is related with the
pion decay constant fπ together with the constiuent quark
mass via gπqq̄ ≈ 2mq=fπ . In our numerical calculation,
however, we used gπqq̄ as a free parameter to find the best
fit for the form factors compared to the experimental data.
It turns out that our best fits for the constituent quark mass

0 0.5 1 1.5 2 2.5 3
Q

2
[GeV

2
]

0

0.2

0.4

0.6

0.8

1

F 1(Q
2 ,t)

<Q
2
>=0.60 GeV

2
, W=1.95 GeV

<Q
2
>=0.75 GeV

2
, W=1.95 GeV

<Q
2
>=1.00 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=2.22 GeV

<Q
2
>=2.45 GeV

2
, W=2.22 GeV

Black: F1
Exp

(Q
2
,t)   Blue: F1

Cov
(Q

2
,t)

0 0.5 1 1.5 2 2.5 3
Q

2
[GeV

2
]

0

0.2

0.4

0.6

0.8

1

g(
Q

2 ,t)

<Q
2
>=0.60 GeV

2
, W=1.95 GeV

<Q
2
>=0.75 GeV

2
, W=1.95 GeV

<Q
2
>=1.00 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=2.22 GeV

<Q
2
>=2.45 GeV

2
, W=2.22 GeV

Black: g
Exp

(Q
2
,t)  Blue: g

Cov
(Q

2
,t)

0 0.1 0.2 0.3 0.4
-t [GeV

2
]

0

0.2

0.4

0.6

0.8

1

F 1(Q
2 ,t)

<Q
2
>=0.60 GeV

2
, W=1.95 GeV

<Q
2
>=0.75 GeV

2
, W=1.95 GeV

<Q
2
>=1.00 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=2.22 GeV

<Q
2
>=2.45 GeV

2
, W=2.22 GeV

Black: F1
Exp

(Q
2
,t)   Blue: F1

Cov
(Q

2
,t)

0 0.1 0.2 0.3 0.4
-t[GeV

2
]

0

0.2

0.4

0.6

0.8

1

g(
Q

2 ,t)

<Q
2
>=0.60 GeV

2
, W=1.95 GeV

<Q
2
>=0.75 GeV

2
, W=1.95 GeV

<Q
2
>=1.00 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=1.95 GeV

<Q
2
>=1.60 GeV

2
, W=2.22 GeV

<Q
2
>=2.45 GeV

2
, W=2.22 GeV

Black: g
Exp

(Q
2
,t)   Blue: g

Cov
(Q

2
,t)

FIG. 10. The comparison of the off-shell pion form factors F1ðQ2; tÞ and gðQ2; tÞ given in Table I and those obtained from the
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Conclusion and Outlook 
•  New form factor  
   appears measurable even in 
•  The value of                        corresponds  
   to the charge radius of pion. 
•  One needs          to determine          .  
•  Main features appear consistent 

between the model calculation and the 
data extraction although the evolution in 
Q2 and/or t is not in full agreement 
between them as expected. 

•  QCD effects deserve further study 
including the extension to inclusive 
processes. 

ranges 0.12 ≤ mq ≤ 0.16 GeV and the corresponding cou-
pling gπqq̄ are consistent with the values of 2mq=fπ within
15% errors.
We also note that the ratio of F2ðQ2; tÞ to t −m2

π is
nonzero in the limit of t → m2

π, while F2ðQ2; tÞ goes to zero
as t → m2

π . This led us to define the new form factor
gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2

πÞ, which should be measur-
able even in the on-mass-shell limit on par with the usual
charge form factor F1ðQ2; m2

πÞ. In particular, we obtain the
sum rule given by Eq. (11), which relates gðQ2; tÞ to
F1ðQ2; tÞ, and note that the value of gðQ2 ¼ 0; t ¼ m2

πÞ
corresponds to the charge radius of a pion.
According to Eq. (11), however, one needs the infor-

mation of F1ð0; tÞ to determine gðQ2; tÞ, while no data of
F1ðQ2; tÞ exist at Q2 ¼ 0 for t < 0. In this work, we used
a simple covariant model to provide at least a clear
example of demonstration for the simultaneous extraction
of both F1ðQ2; tÞ and gðQ2; tÞ (or F2ðQ2; tÞ). In our
numerical calculations, we show the 3D plots of
F1ð2ÞðQ2; tÞ and gðQ2; tÞ in terms of ðQ2; tÞ values as
shown in Figs. 5 and 6.
Our extracted values of the pion form factors obtained

from the experimental cross section for dσL=dt given in
Table VII of Ref. [7] and the results obtained from the
solvable model with mq ¼ 0.14$ 0.02 GeV are summa-
rized in Table I. The extracted off-shell form factors
FExp
1 ðQ2; tÞ and gExpðQ2; tÞ from the 30 data points in

Table I are plotted in Fig. 8 with respect to Q2 and t. The
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
However, the comparison of the extracted values of the

form factors with covariant model results indicates that
the evolution in Q2 and/or t is not in full agreement
between the extracted vs model form factors. On the one
hand, this is not unexpected as the internal QCD
dynamics of the pion probed by the electroproduction
data should not be restricted only to its valence content,
while the present model for the pion coupling to the quark
and antiquark is just of a pointlike form. A rather
significant difference in the slope of Q2 evolution
between FExp

1 ðQ2; tÞ and FCov
1 ðQ2; tÞ in the top left panel

of Fig. 10 may be an indication of lacking the QCD effect
from the gluon exchange between quark and antiquark
that gets important as Q2 gets larger. The QCD non-
perturbative dynamics for the self-energies of quarks and
gluons, and the vertices of pion-quark, photon-quark, etc.,
deserves further study exploring the 3D imaging of the
off-shell form factors. On the other hand, the analysis of
the electroproduction data by the Chew-Low method
demands the pion-nucleon form factor as input, which
indeed is a simplification and works only close to the pion
pole. Such a limitation may be also reflected in our
extraction of the form factors from the data, which in part

corroborates the difference between the extracted vs
model form factors.
Nevertheless, the overall representation of the trends of

the extracted form factors in the ðQ2; tÞ plane by the present
constituent model indicates that our analysis goes beyond
its obvious limitations. It encourages more in-depth theo-
retical and experimental efforts to reveal the 3D imaging of
the off-shell pion form factors.

ACKNOWLEDGMENTS

This work was supported in part by the U.S.
Department of Energy under Grant No. DE-FG02-
03ER41260 (C. J.); by the National Research
Foundation of Korea (NRF) under Grant No. NRF-
2017R1D1A1B03033129 (H. M. C.); by the project
Instituto Nacional de Ciência e Tecnologia-Física
Nuclear e Aplicações (INCT-FNA) Proc. No. 464898/
2014-5; by CAPES—Finance Code 001; by Conselho
Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) under Grants No. 308025/2015-6 (J. P. B. C. M.),
No. 308486/2015-3 (T. F.), and No. PVE 401322/2014-9
(C. J.); by Fundação de Amparo à Pesquisa do Estado de
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obtain the trace term as
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ranges 0.12 ≤ mq ≤ 0.16 GeV and the corresponding cou-
pling gπqq̄ are consistent with the values of 2mq=fπ within
15% errors.
We also note that the ratio of F2ðQ2; tÞ to t −m2

π is
nonzero in the limit of t → m2

π, while F2ðQ2; tÞ goes to zero
as t → m2

π . This led us to define the new form factor
gðQ2; tÞ ¼ F2ðQ2; tÞ=ðt −m2

πÞ, which should be measur-
able even in the on-mass-shell limit on par with the usual
charge form factor F1ðQ2; m2

πÞ. In particular, we obtain the
sum rule given by Eq. (11), which relates gðQ2; tÞ to
F1ðQ2; tÞ, and note that the value of gðQ2 ¼ 0; t ¼ m2

πÞ
corresponds to the charge radius of a pion.
According to Eq. (11), however, one needs the infor-

mation of F1ð0; tÞ to determine gðQ2; tÞ, while no data of
F1ðQ2; tÞ exist at Q2 ¼ 0 for t < 0. In this work, we used
a simple covariant model to provide at least a clear
example of demonstration for the simultaneous extraction
of both F1ðQ2; tÞ and gðQ2; tÞ (or F2ðQ2; tÞ). In our
numerical calculations, we show the 3D plots of
F1ð2ÞðQ2; tÞ and gðQ2; tÞ in terms of ðQ2; tÞ values as
shown in Figs. 5 and 6.
Our extracted values of the pion form factors obtained

from the experimental cross section for dσL=dt given in
Table VII of Ref. [7] and the results obtained from the
solvable model with mq ¼ 0.14$ 0.02 GeV are summa-
rized in Table I. The extracted off-shell form factors
FExp
1 ðQ2; tÞ and gExpðQ2; tÞ from the 30 data points in

Table I are plotted in Fig. 8 with respect to Q2 and t. The
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
However, the comparison of the extracted values of the

form factors with covariant model results indicates that
the evolution in Q2 and/or t is not in full agreement
between the extracted vs model form factors. On the one
hand, this is not unexpected as the internal QCD
dynamics of the pion probed by the electroproduction
data should not be restricted only to its valence content,
while the present model for the pion coupling to the quark
and antiquark is just of a pointlike form. A rather
significant difference in the slope of Q2 evolution
between FExp

1 ðQ2; tÞ and FCov
1 ðQ2; tÞ in the top left panel

of Fig. 10 may be an indication of lacking the QCD effect
from the gluon exchange between quark and antiquark
that gets important as Q2 gets larger. The QCD non-
perturbative dynamics for the self-energies of quarks and
gluons, and the vertices of pion-quark, photon-quark, etc.,
deserves further study exploring the 3D imaging of the
off-shell form factors. On the other hand, the analysis of
the electroproduction data by the Chew-Low method
demands the pion-nucleon form factor as input, which
indeed is a simplification and works only close to the pion
pole. Such a limitation may be also reflected in our
extraction of the form factors from the data, which in part

corroborates the difference between the extracted vs
model form factors.
Nevertheless, the overall representation of the trends of

the extracted form factors in the ðQ2; tÞ plane by the present
constituent model indicates that our analysis goes beyond
its obvious limitations. It encourages more in-depth theo-
retical and experimental efforts to reveal the 3D imaging of
the off-shell pion form factors.
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corresponds to the charge radius of a pion.
According to Eq. (11), however, one needs the infor-

mation of F1ð0; tÞ to determine gðQ2; tÞ, while no data of
F1ðQ2; tÞ exist at Q2 ¼ 0 for t < 0. In this work, we used
a simple covariant model to provide at least a clear
example of demonstration for the simultaneous extraction
of both F1ðQ2; tÞ and gðQ2; tÞ (or F2ðQ2; tÞ). In our
numerical calculations, we show the 3D plots of
F1ð2ÞðQ2; tÞ and gðQ2; tÞ in terms of ðQ2; tÞ values as
shown in Figs. 5 and 6.
Our extracted values of the pion form factors obtained

from the experimental cross section for dσL=dt given in
Table VII of Ref. [7] and the results obtained from the
solvable model with mq ¼ 0.14$ 0.02 GeV are summa-
rized in Table I. The extracted off-shell form factors
FExp
1 ðQ2; tÞ and gExpðQ2; tÞ from the 30 data points in

Table I are plotted in Fig. 8 with respect to Q2 and t. The
main features captured in the variation appear consistent
between Figs. 6 and 8 from the model calculation and the
data extraction, respectively.
However, the comparison of the extracted values of the

form factors with covariant model results indicates that
the evolution in Q2 and/or t is not in full agreement
between the extracted vs model form factors. On the one
hand, this is not unexpected as the internal QCD
dynamics of the pion probed by the electroproduction
data should not be restricted only to its valence content,
while the present model for the pion coupling to the quark
and antiquark is just of a pointlike form. A rather
significant difference in the slope of Q2 evolution
between FExp

1 ðQ2; tÞ and FCov
1 ðQ2; tÞ in the top left panel

of Fig. 10 may be an indication of lacking the QCD effect
from the gluon exchange between quark and antiquark
that gets important as Q2 gets larger. The QCD non-
perturbative dynamics for the self-energies of quarks and
gluons, and the vertices of pion-quark, photon-quark, etc.,
deserves further study exploring the 3D imaging of the
off-shell form factors. On the other hand, the analysis of
the electroproduction data by the Chew-Low method
demands the pion-nucleon form factor as input, which
indeed is a simplification and works only close to the pion
pole. Such a limitation may be also reflected in our
extraction of the form factors from the data, which in part

corroborates the difference between the extracted vs
model form factors.
Nevertheless, the overall representation of the trends of

the extracted form factors in the ðQ2; tÞ plane by the present
constituent model indicates that our analysis goes beyond
its obvious limitations. It encourages more in-depth theo-
retical and experimental efforts to reveal the 3D imaging of
the off-shell pion form factors.
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