





PRELIMINARIES

® Principle: virtual photon scatters off hadron, use as a

probe of the hadronic structure by detecting outgoing

Exclusive Meson Electroproduction

particles.

e(k) +h(P) — €'(k') + W (P'") + m(q) ®* One way of probing is by utilizing factorization theorems
- , which separate the reaction, and the ‘soft’, long-distance
@ = - , QCD physics can be encapsulated by GPDs, for instance,
Energy/distance scale of virtual . X . A .
photon probe which are essentially the generalized distributions of the

Momentum transfer to target -
® More generally one can utilize CFFs: scalar structure

s functions that tell us contributions from various tensor
2P-q coefficients. These CFFs are invariant quantities, unlike the
In the forward limit, momentum

fraction of interacting particle GPDs, which rely on ‘handbag’ dominance. The CFFs
should correspond to the GPDs in the forward limit. (The
number of CFFs should match the number of GPDs.)




Meson Electroproduction off the Scalar
Target: Target Rest Frame (TRF)
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COMPTON FORM
FACTORS

The number of CFFs is related to the number of degrees
of freedom present in the hadronic interaction. For
exclusive scalar meson electroproduction off the scalar
target, there is 3 (spin degrees of freedom of the virtual
photon), but gauge invariance constrains the current so
that there are 2 independent CFFs.

The advantage of these structure functions lies in their
independence of the process in question. The CFFs can be
measured experimentally and then be used to predict
cross sections for other physics. [See Nagashima,
Elementary Particle Physics Vol. 2, pages 325-326 for

instance for an intuitive picture of this.]
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the most gene
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information about the hadronic physics, and comparing and contrasting the CFFs and GPDs can
establish the theoretical uncertainties underpinning the GPDs due to their lack of invariance.
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- Theory of deeply virtual Compton sccHerin on the nucleon, A.V. Belitsky, D.
M uller, A. Kirchner, 2002, pages 28-29. Emphasis added by me.
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We wish to access kinematics where U
the BSA is non-vanishing, as this tells
us interesting information about some
GPDs and highlights the advantage
of measuring CFFs SC
To that end, I've been working on a g T L Sl
simple model calculation. | am SS - Pt Pod
looking to provide a bare bones - - -— - : -
structure which is sufficient to find M, - a Y a wt’, ke s
significant BSA regions suU ol T o + w2 s - o no
Lack of BH process means | must find T Pk M S ’ -
at least one CFF that takes on a non- ) 20 St M
vanishing imaginary component C Y A N - %
3 PP P
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® Derivative coupling harged target channels are

( essentially ready to go, | just need to code it up
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[See Interpolating helicity spinors between the instant form and the light-front form, by Li, An, Ji, 2015, PRD, page 11]
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Hence an adaptive strategy has these components [MaleSimp75]:
(1) an integration rule to compute the integral and error estimates over a region;
(i1) a method for deciding which elements of a set of regions {Vi}, to partition/subdivide;

(111) stopping criteria for deciding when to terminate the adaptive strategy algorithm.



Global Adaptive Strategy

A global adaptive strategy reaches the required precision and accuracy goals of the integral estimate by recursive bisection of the

subregion with the largest error estimate into two halves, and computes integral and error estimates for each half.

The global adaptive algorithm for Nintegrate is specified with the Method option value "GlobalAdaptive":

IN[32]'= Nintegrate[1/Sqrt[x], {x, 0, 1}, Method —> "GlobalAdaptive™]

out[32]= 2.

option name default value

Method Automatic integration rule used to compute integral and error estimates
over each subregion

"SingularityDepth" Automatic number of recursive bisections before applying a singularity
handler

"SingularityHandler" Automatic singularity handler

"SymbolicProcessing” Automatic number of seconds to do symbolic preprocessing
"GlobalAdaptive" options.
"GlobalAdaptive" is the default integration strategy of Nintegrate. It is used for both one-dimensional and multidimensional

integration. "GlobalAdaptive" works with both Cartesian product rules and fully symmetric multidimensional rules.

"GlobalAdaptive" uses a data structure called a "heap" to keep the set of regions partially sorted, with the largest error region being at
the top of the heap. In the main loop of the algorithm the largest error region is bisected in the dimension that is estimated to be

responsible for most of its error.




Each region has a record of how many bisections are made per dimension in order to produce it. When a region has been produced

through too many bisections a singularity flattening algorithm is applied to it; see "Singularity Handling".

"GlobalAdaptive" stops if the following expression is true:
globalError < globalintegral 1078 v globalError < 107,

where pg and ag are precision and accuracy goals.

The strategy also stops when the number of recursive bisections of a region exceeds a certain number (see "MinRecursion and

MaxRecursion"), or when the global integration error oscillates too much (see "MaxErrorIncreases”).

Theoretical and practical evidence show that the global adaptive strategies have, in general, better performance than the local

adaptive strategies [MalcSimp75][KrUebo8].




MinRecursion and MaxRecursion

The minimal and maximal depths of the recursive bisections are given by the values of the options MinRecursion and MaxRecursion.

If for any subregion the number of bisections in any of the dimensions is greater than MaxRecursion then the integration by

"GlobalAdaptive" stops.

¢ Setting MinRecursion to a positive integer forces recursive bisection of the integration regions before the integrand is ever evaluated.

This can be done to ensure that a narrow spike in the integrand is not missed. (See "Tricking the Error Estimator".)

For multidimensional integration an effort is made to bisect in each dimension for each level of recursion in MinRecursion.

® Looking at the function documentation, the default minimum recursion depth is ZERO! Increasing the

\ WorkingPrecision isn’t going to help with this, as the same points are still sampled, just more precisely.
Increasing MaxErrorincreases only tells Mathematica that IF the integral subregion error sum estimates keep
going up, how many times this can happen before it gives up. Again, this isn’t going to help an integral with
small values and rapidly-changing behavior due to a complicated integrand. GlobalAdaptive is already the
best strategy for this kind of integral, and increasing the symbolic preprocessing isn't going to do much for a
complicated integrand like this, that only in principle decreases the evaluation time, anyway. Increasing
MinRecursion to, say, 4 splits each dimension of the integral domain 24 = 16 times, however. Mathematica is
now forced to do 16”2 integrals and is MUCH more likely to find small contributions and get better error
estimates. Another possibility is to increase your PrecisionGoal, but the effective precision you get is about half
what your setting is for WorkingPrecision, and WorkingPrecision must be at least that of PrecisionGoal, and
computation times increase dramatically beyond MachinePrecision (~16). | found more success by just
increasing my MinRecursion.



You should realize that with sufficiently pathological functions, the algorithms used by NIintegrate can give wrong answers.
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