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Background and Motivation
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• Historically, pion distributions have been extracted from fixed target 
𝜋𝐴 data
• Drell-Yan (DY) 𝜋𝐴 → 𝜇!𝜇"𝑋
• Prompt photon 𝜋𝐴 → 𝛾𝑋

Pion structure
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GRS, GRV, and SMRS ASV valence PDF xFitter
barryp@jlab.org

Owens
attempted to
use 𝐽/𝜓
production from 
𝜋𝐴 scattering 
using CEM



Introduction of leading neutron

• Description of leading neutron (LN) data through Sullivan process
• First phenomenological study on pion structure functions using  by 

McKenney, et al.
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Experiments to probe pion structure
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Drell-Yan (DY)
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Large-𝑥! behavior

• Generally, the parametrization lends a 
behavior as 𝑥! → 1 of the valence quark PDF 
of 𝑞" 𝑥 ∝ 1 − 𝑥 #

• For a fixed order analysis, we find 𝛽 ≈ 1
• Debate whether 𝛽 = 1 or 𝛽 = 2
• Aicher, Schaefer Vogelsang (ASV) found 𝛽 = 2

with threshold resummation
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ASV valence PDF
Phys. Rev. Lett. 105, 114023 (2011).



Counting Rules predict large-𝑥! behavior
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Other claims
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Light-Front Holographic QCD
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Include Threshold Resummation in DY

• ASV analysis got 1 − 𝑥 $ behavior using threshold resummation, 
while all NLO analyses follow (1 − 𝑥)
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Soft gluon resummation in DY

• Fixed-target Drell-Yan notoriously has large-𝑥% contamination of higher 
orders
• Large logarithms may spoil perturbation
• Focus on corrections to the most important 𝑞/𝑞 channel
• Resum contributions to all orders of 𝛼&
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Methods of resummation

• Resummation is performed in conjugate space
• Drell-Yan data needs two transformations
• We can perform a Mellin-Fourier transform to account for the rapidity
• A cosine appears while doing Fourier transform; options: 

1) Take first order expansion, cosine ≈ 1
2) Keep cosine intact

• Can additionally perform a Double Mellin transform
• Explore the different methods and analyze effects
• Double Mellin transform is theoretically cleaner and sums up terms 

appropriately
12barryp@jlab.org
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Data and theory comparison

• Cosine method tends to 
overpredict the data at 
very large 𝑥%
• Double Mellin method is 

qualitatively very similar 
to NLO
• Resummation is largely a 

high-𝑥% effect
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Method 𝝌𝟐/𝐧𝐩𝐭𝐬
NLO 0.85

NLO+NLL cosine 1.29

NLO+NLL expansion 0.95

NLO+NLL double Mellin 0.80

Slightly 
disfavored

Current data do not 
distinguish between 
NLO and NLO+NLL



Resulting PDFs

• Large 𝑥 behavior of 𝑞" highly sensitive to method of resummation
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Effective 𝛽" parameter

• 𝑞" 𝑥 ∼ 1 − 𝑥 #!"##as 𝑥 → 1
• Threshold resummation does 

not give universal behavior of 
𝛽"'((

• NLO and double Mellin give 
𝛽"'(( ≈ 1
• Cosine and Expansion give 
𝛽"'(( > 2
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Deriving resummation expressions – MF

Claim: yellow terms give rise to the resummation expressions

Claim: Red terms are power suppressed in (1 − 𝑧) and wouldn’t contribute 
to the same order as the yellow terms
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Generalized Threshold resummation

• Write the (𝑧, 𝑦) coefficients in terms of (𝑧) , 𝑧*), and for the red 
terms, you get:

• This is not power suppressed in (1 − 𝑧)) or (1 − 𝑧*) but instead the 
same order as the leading power in the soft limit 
• Generalized threshold resummation in the soft limit does not agree 

with the MF methods
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What we believe to be theoretically better

• Take more seriously the 
red and yellow
• 𝛽"'(( ∼ 1 − 1.2, much 

closer to 1 than 2
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Datasets -- Kinematics

• Not much data overlap
• Could be problems with

factorization at high 𝑥! -
should we trust the data?
• Need more observables!
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Lattice QCD observables
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How to do it?

• Make use of good lattice cross sections and appropriate matching 
coefficients

• Structure just like experimental cross sections – good for global 
analysis
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Roadblocks

• Don’t have a definite answer to DY hard coefficients – NLO or 
NLO+NLL?
• Lattice QCD data intrinsically have systematic corrections associated

with it that are a priori unknown
• Can we further distinguish?
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Reduced pseudo-Ioffe time 
distributions
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Observable

• Nonlocal matrix element of quark operators sandwiched between 
hadron states:

• When Fourier transformed and taking the 𝛼 = + index, we recover 
the standard PDF
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What is done

• For generic 𝑧, 𝛼, and 𝑝, the Lorentz decomposition is

• Lattice people will choose a convenient 𝑧, 𝛼 to make calculation easier
• 𝑧 = (0,0,0, 𝑧+) and 𝛼 = 0
• 𝑀, 𝑧+, 𝑝 = 2𝑝,ℳ(𝜈, 𝑧+$)
• Then can extract the Ioffe time pseudo-distribution from calculated 

matrix elements
barryp@jlab.org 25

Ioffe time pseudo-
distribution

𝜈 = 𝑝 ⋅ 𝑧
“Ioffe time”



Observable

• Actual calculation is the reduced pseudo Ioffe time distribution 
(reduced pseudo-ITD)

• The UV divergences arising from choosing the spacelike 𝑧 cancel from 
taking the ratio at the rest frame 𝑝- = 0 (light-like 𝑧 does not have 
these divergences)
• Taking real part gives access to the valence quark distribution
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Fitting the Data and Systematic Effects

Valence quark 
distribution in pion

Wilson coefficients 
for matching

Systematic Effects to parametrize Other potential 
systematic 
corrections the 
data is not sensitive 
to

• 𝑧"𝐵# 𝜈 : power corrections
• $

%
𝑃# 𝜈 : lattice spacing errors

• 𝑒&'! (&% 𝐹# 𝜈 : finite volume 
corrections
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Integration limits

• Notice the integral over 𝑥 goes 0 → 1 – this is the case for general 
lattice matching
• However, the integral for experimental values goes from 𝑥./0 → 1
• Because the sensitivity to threshold corrections to the short distance 

coefficient comes at large 𝑥 where the PDF is sharply falling, the 
integration over the entire range of 𝑥 is not sensitive to threshold 
regions
• Do not perform threshold resummation for lattice observables
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Parametrizing the systematic effects

• Use a basis of Jacobi polynomials and Taylor expand
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• Expanded 𝑏3, 𝑝3, 𝑓3, which are free 
parameters in the fit

Begin at 𝑛 = 1 to ensure at 𝜈 = 0 the observable == 1



Current-current correlators
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Current-current correlators

• Another type of observable from lattice currents (axial-vector)

• Where 𝑍1,3 are renormalization constants
• This can be expressed in two dimensionless quantities 𝑇4 and 𝑇$, 

which are functions of invariants 𝜈 and 𝑧$

• Antisymmetric in 𝜇 ↔ 𝜈
• Choosing the 𝜇 = 1 and 𝜈 = 2, we isolate 𝑇4
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Current-current correlator matching

• Very noisy data, fit a subset of the systematics to ensure PDF stability

• Sum starts at 𝑛 = 0 barryp@jlab.org 32



Datasets available

Used in both 
Rp-ITD and CC 
correlators
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Scale setting/Methodology
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Multiple scale problem

• LHS (1st equation): Lattice QCD data are calculated using QCD and 
must be renormalized to the continuum limit and have 
renormalization constants – unlike experimental cross sections!!
• Related with lattice spacing.

• RHS: two scales – renormalization scale to specify PDF, factorization 
scale to get hard coefficients
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Convenient choice of scales

• Usually scales are chosen to ensure perturbative expansion is OK

• Hard coefficients for experimental cross sections usually have log(5
$

6$
), 

and a choice of 𝜇 = 𝑄 cancels the logs
• For Rp-ITD, terms like:
• CC:

barryp@jlab.org 36



Not so convenient for lattice data

• The values of 𝑧 are so large, that the corresponding 𝜇 is below 1 GeV
• Equating 𝜇% = 𝜇7 would imply that 𝛼8 𝜇$ is non-perturbative
• Alternative: set 𝜇 to be in a perturbative region and constant among 

all data
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Perturbation expansion is OK

• At the expense of 
a small 𝛼8, the 
product with the 
logarithm is 
under control
• Choose 𝜇9:; = 2

GeV unless 
otherwise 
specified
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Methodology

Experimental 
data

Lattice data

Covariance matrix

Parametrization of 
PDFs
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Analysis Results
Reduced pseudo-ITD
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Goodness of fit

• Scenario A: 
experimental data 
alone
• Scenario B: 

experimental + lattice, 
no systematics
• Scenario C:

experimental + lattice,
with systematics
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Histograms of 
parameters
• Outlined – NLO
• Filled – NLO+NLLDY
• All distributions well

peaked
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Agreement with the data

• Results from 
the full fit and 
isolating the 
leading twist 
term
• Difference 

between bands 
is the 
systematic 
correction
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Resulting PDFs

• PDFs and 
relative 
uncertainties
• Including lattice

reduces
uncertainties
• NLO+NLLDY

changes a lot –
unstable under 
new data
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Effective 𝛽 from 1 − 𝑥 (&''
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Fitting only the 𝑝 = 1 points

• Most precise points, but not large range in Ioffe time
• Through analysis containing only lattice data, would not be sufficient 

to get a large 𝑥 description of PDF

• Contrary to quasi-PDFs, which have correction terms ∝ 4
<$ 4=< >%
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Data and theory comparison

• Each bin of 𝑧
contains 3 
momentum points, 
but only fitting to 1 
momentum point
• Overall 𝜒$ are 

similar, but the fits 
to these are 
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Resulting low-momentum PDFs

• These 
momentum 
points do 
entire job!
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Scale Variation

• Do we capture systematic uncertainty from choosing 𝜇9:; = 2 GeV?
• Central values within uncertainty band – not a big issue
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Quantifying Systematic Corrections

• Do systematic corrections agree 
within the DY theories?
• No!

• Because the leading twist terms
are well constrained by the
experimental data, systematic
corrections are “fudge factors”
• Have a min/max estimation for 

the systematic corrections
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Quantifying individual systematics

• Breaking down by the 3 
systematics

• Depends on 𝑧 values which 
of power or spacing 
corrections dominate
• Finite volume corrections

don’t matter
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Current-current correlator 
analysis
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Resulting 𝜒)

• With full 
systematics
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Agreement with data
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Agreement with data
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Quantifying systematics – total 

• Not guaranteed to be 0
and 𝜈 = 0
• Different DY methods 

give different signs
• Large uncertainties at

small 𝑧
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Quantifying systematics

• Each of two systematics

• Some tension between the two 
types, effectively canceling
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Conclusions
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Conclusions and Outlook

• Need more observables to further distinguish between DY theories
• Large 𝑥 behavior consistent with 𝛽'(( ∼ 1 – from QCD calculations!
• Extend methodology to observables that are not well constrained by 

experimental data – helicity PDFs, transversity PDFs, GPDs, etc.
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