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Why Chiral Effective Theory?
▪ Quantum Chromodynamics is notoriously difficult to solve. 

▪ Coupling constant is not sufficiently small so at medium to low energies, so its non 
perturbative.

▪ QCD Lagrangian is invariant under chiral symmetry in massless quark limit.
▪ Spontaneous chiral symmetry breaking leads to pseudoscalar Goldstone bosons (mesons).

▪ This chiral symmetry can be exploited to construct an “effective field theory” of QCD.



Chiral SU(3) Effective Theory
▪ Instead of interactions being mediated by gluons, they are mediated by pseudoscalar mesons. 

▪ To investigate hadron structure, write Lagrangian density in terms of hadronic degrees of 
freedom.

▪ Mesons, Octet baryons, and decuplet baryons

https://physics.aps.org/articles/v10/72

http://sten.astronomycafe.net/quarks/



Introduction Meson Loops
▪ Field theoretic description of baryons (particles composed of three quarks) require higher order 
loop corrections.

▪Meson loops are when baryons emit a virtual meson (particles composed of two quarks) at one 
space-time point and reabsorb them at another.

▪ Important contributions to the properties of baryons like masses, sigma terms, electromagnetic 
form factors, etc.



Abstract
▪Investigate fundamental low-energy properties of baryons (e.g. self-energies, masses, and sigma 
terms) described within chiral effective theory.

▪ Calculate meson loop corrections to these properties using a relativistic formulation with finite 
range regularization for the full SU(3) octet and decuplet.

▪ Compare with lattice QCD data to determine fitting parameters. Calculate light and strange 
quark sigma terms using the Feynman-Hellman Theorem.



SU(3) Chiral Effective Lagrangian
▪ The lowest order Lagrangian describing the interaction of pseudoscalar mesons (    ) with 

octet (    ) and decuplet (      ) baryons is given by 

where



Baryon and Meson Fields
▪ The SU(3) octet and decuplet fields are given by

▪ Pseudoscalar meson fields are 
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Feynman Rules
▪ External lines have a factor of           or            (Dirac spinors).

▪ Internal lines have corresponding propagators,             .                       

▪ Interactions have vertex factors,           . 

▪ Need to sum over the external spins (results in a trace).

▪ For closed fermion loops, integrate over the intermediate momentum.

https://protonsforbreakfast.wordpress.com/2014/04/13/feynman-
diagrams-are-maths-not-physics/



Simple Self-Energy Derivation
Nucleon to nucleon-pion loop



Simple Self-Energy Derivation

Nucleon to nucleon-pion self-energy operator



Simple Self-Energy Derivation

Nucleon to nucleon-pion self-energy



Propagators

Meson:

Octet baryon:

Decuplet baryon:

where



Interactions/Vertices

Octet to Octet:

Octet to Decuplet:

Decuplet to Decuplet:



SU(3) Chiral Effective Lagrangian

where



Coupling Constants



Self-Energy Diagrams
Octet to octet Octet to decuplet

Decuplet to octet Decuplet to decuplet



Self-Energy Operators
Octet to octet Octet to decuplet

Decuplet to octet Decuplet to decuplet



Definitions of Self-Energies

▪ Octet to octet

▪ Octet to decuplet

▪ Decuplet to octet

▪ Decuplet to decuplet

where



Regularization Prescription
▪ Integral over the meson momentum diverges.

▪ Need a regularization prescription to suppress the divergences.

▪ Options are dimensional regularization, Pauli-Villars, or finite range regularization (FRR).

▪ FRR offers some advantages over the others.



Convergence of Finite Range 
Regularization 
▪ Ross Young et. al. studied the convergence properties of FRR in detail [1].
▪ For HB     -PT but results still apply here.      

▪ Short dash is dim.-reg. , long dash is 
dim.-reg. with         intermediate state 

included, and solid is FRR.

▪ Dim. reg. diverges badly at large        , 
but FRR doesn’t! 

▪ Especially useful for sigma term 
calculations. 

[1] R. D. Young, D. B. Leinweber, A. W. Thomas, Prog. Part. Nucl. Phys. 50 (2003) 399-417



Finite Range Regularization 
▪Apply finite range regularization prescription in the form of a dipole form factor.

▪ Considers the finite structure of the baryons and offers better convergence than other 
prescriptions. 

▪ Opposed to dimensional regularization, which is better for point like-particles 



Result
▪ Simplest result in all its glory is still long.
▪ Some important terms show up though.
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Leading Nonanalytic Behavior
▪ An important consistency check with the theory is to ensure that the self-energies have the 
same leading nonanalytic (LNA) terms predicted by QCD.

▪ “Nonanalytic terms” are odd powers of the meson masses or logarithms of the meson mass.

▪Other analytic terms depend on the model and/or regularization prescription.

▪ Meson masses squared are proportional to the quark masses.



LNA Results
▪ The LNA for all octet and decuplet baryons of the form

▪ Reproduces the LNA of                   ,                   ,                   ,                    found in the literature [1].

▪ Can also now compute the LNA of any other self-energy.

[2]  V. Pascalutsa and M. Vanderhaeghen, Phys. Lett. B 
636, 31 (2006).



Decay Rates 
▪ If                                   then the self-energy gains an imaginary term, and the external baryon can 
decay into a baryon-meson pair via the strong interaction. 

▪ The self-energies are related to the decay rates of baryons through                                                   
(like optical theorem).

▪ Kinematically                                                              , and                     are all allowed to decay. 



Decay Rate Equations



Octet as a Function of the Pion Mass



Decuplet as a Function of Pion Mass



Decuplet as a Function of Pion Mass



Total Self-Energies of Baryons



Applications of Self-Energies
▪ These results are presented in our paper [3].

▪ These meson loops give higher order corrections to many baryon properties. 

▪ An immediate application of the self-energies is to determine higher order corrections to the 
masses.  

[3] P. M. Copeland, C.-R. Ji, W. Melnichouk, Phys. Rev. D 103, 094019 
(2021).



Expansion of Baryon Mass
▪Baryon masses can be expanded in powers of the quark mass (or meson mass squared):

▪ is the baryon mass in the chiral limit.

▪The linear correction term is :                                                      .

▪ Quark masses are proportional to meson masses squared:



SU(3) Symmetric Scheme

[4] A. Walker-Loud, Nucl. Phys. A747, 476-507 (2005).

▪ Formally, the linear terms have SU(3) symmetric coefficients.

▪ The parameters and masses in the equations are all shared.
▪ Otherwise, SU(3) symmetry is broken.

▪ Requires a global fit to the data.

▪ Use the same average octet mass and average decuplet mass in  
all self-energy equations 



Renormalizing Self-Energies
▪ In the SU(3) scheme, the meson loop corrections are the renormalized baryon self-energies.

▪ Subtract off the analytic         and        terms:  

▪ Sum all intermediate states:



Generalized Scheme
▪ The SU(3) symmetric scheme may be seen as an over extension of the theory.

▪ To study model dependence, we also make a generalized scheme in which the coefficients of 
linear terms are arbitrary.

▪ The meson loop contributions are then the original self-energies (non-renormalized). 

▪ No parameters are shared by any of the baryons, so the fits are performed individually. 



Crash course on Lattice QCD
▪ Lattice QCD is a non perturbative way to make predictions from QCD.

▪ Input the action of QCD into a computer to simulate predictions from the theory.

▪ “Discretize” space-time and compute observables on the lattice. 

▪ Very computationally expensive, typically done at larger than physical values of the pion mass. 

▪ Need effective field theories to extrapolate to the physical point and to the continuum limit.



Scale Setting in Lattice QCD
▪ Lattice data are computed in dimensionless lattice units.

▪ Quantities are multiplied by the lattice spacing, “a” (ex:           ). 

▪ Two different ways to think about the lattice spacing.

▪Mass independent (MILS) - the lattice spacing stays the same at all values of the quark mass.

▪Mass dependent (MDLS) - the lattice spacing changes with the quark mass in order to keep an 
external physical quantity the same at all simulation values (ex: Sommer scale).

q1    q2    q3    q4    q5

Mass independent:

Mass dependent:



Fitting to Lattice QCD Data
▪ Need to fit to lattice QCD to determine the fitting parameters.      

▪ Use the PACS-CS [5] and QCDSF-UKQCD baryon mass data [6].

▪Choose these data sets because they study all the baryon masses as function of the light quarks (up 
and down) AND the strange quark. 
▪ Important for extracting strange sigma terms.

[5] S. Aoki et al. [PACS-CS Collaboration], Phys Rev. D79, 034503 (2009).
[6] W. Bietenholz et al., [QCDSF-UKQCD Collaboration] Phys. Rev. D84, 
054509 (2011).



Fitting to Lattice QCD Data (cont’d)
▪ Fit in the light-strange quark mass planes by fitting the baryon masses to the array of pion, kaon 
data.

▪ Only consider         < 0.25 GeV² (less susceptible to scale setting scheme).



Octet fits – SU(3) 
▪ Perform a simultaneous fit to determine the shared parameters                              and also the       ‘s.



Octet fits - Generalized
▪ Perform a fit to determine the many individual  parameters.



Decuplet Fits - SU(3) 
▪ Perform a global fit to determine the shared parameters                          and        ‘s.



Decuplet Fits - Generalized
▪ Likewise, fit generalized expansion for decuplet to determine those parameters.



Sigma Terms
▪ Scalar matrix elements that quantify baryon mass dependence on the quark masses.

▪ Crucial for understanding chiral symmetry breaking, interpreting dark matter experiments, and 
understanding the origin of baryon masses.

▪ Use Feynman-Hellman theorem to determine sigma terms from masses.

[7] P. E. Shanahan, A. W. Thomas, R. D. Young, Phys. Rev. D87, 074503 (2013)        [8] R. D. Young, A. W. Thomas, Phys. Rev. D81, 034503 (2010).



Octet Sigma Term Results
▪ Plugging the fit parameters back into the mass expansions and taking the derivatives gives the 
light and strange sigma terms for the baryons.
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Octet Sigma Term Results
▪ Plugging the fit parameters back into the mass expansions and taking the derivatives gives the 
light and strange sigma terms for the baryons.



Decuplet Sigma Term Results
▪ Plugging the fit parameters back into the mass expansions and taking the derivatives gives the 
light and strange sigma terms for the decuplet baryons.



Comparison with other          ‘s 
▪ tension between pionic atom scattering experiments and lattice results/chiral 
extrapolations.
▪ ~ 60 MeV (pionic atoms) vs. 45 MeV (lattice)

▪ Gupta et. al. [9] recently proposed considering excited states (        and           ) on lattice with the 
help of ordinary    -PT and found some agreement between experimental results.

▪ [9] R. Gupta et. al., Phy. Rev. Lett. 127, 242002 (2021) 



Comparison with Gupta et. al. 
▪ When we compare with Gupta et. al. we find agreement at larger        , but not at the physical 
point. 

▪ Would like to see a new analysis that uses full

chiral SU(3) effective theory as guiding theory

and also want to consider strange sigma terms. 

▪ [10] R. Gupta et. al., Phy. Rev. Lett. 127, 242002 (2021) 



Previous FRR analysis 
▪ Shanahan et. al. [8]  performed similar analysis on the octet using heavy baryon chiral effective 
theory. 

▪ Similar light sigma term results (         ~ 51(3)(6) MeV).

▪ However,          ranged between 21(6)(0) and 59(6)(1) MeV for the MDLS and MILS schemes. 
respectively. 

▪ Compare with our          = 50(8) vs 49(8) MeV for the MDLS and MILS schemes.       

▪ [8] P. E. Shanahan, A. W. Thomas, R. D. Young, Phys. Rev. D87, 074503 
(2013).



Mass decompositions
▪ The origin of the proton’s mass is one of the most important and hotly debated topics right 
now. 

▪ Several potential decompositions - from Hamiltonian, trace, or gravitational form factors.

▪ Sigma term contribution to the mass is the same regardless of scheme!
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Sigma Term Contributions to Masses
▪ Define quark mass fraction, trace anomaly, and quark energy.
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Sigma Term Contributions to Masses
▪ Define quark mass fraction, trace anomaly, and quark energy.



Decomposition of baryon masses
▪ Due to larger strange sigma terms, the trace anomaly and quark/gluon energy contributions 
decrease for strange baryons.



Summary
▪ Computed all octet and decuplet self-energies within relativistic SU(3) chiral effective theory using 
finite range regularization.

▪ Produced the LNA behavior for all self-energies.

▪ Numerically studied the self-energies as a function of the pion mass squared and the cuff off 
parameter.

▪ Expanded the baryon mass in powers of the quark masses (meson masses squared). Utilized baryon 
self-energies to get the loop corrections to the mass.

▪ Fit masses to PACS-CS lattice QCD data to determine the parameters in the mass expansion.



Summary 
▪ Used the Feynman-Hellman theorem to derive the light and strange quark sigma terms for all 
SU(3) octet and decuplet baryons. 

▪ Reduced uncertainty on           from ≈20 MeV – 60MeV  to           =  50(6)(1).



Outlook 
▪ Want a more comprehensive lattice study of 

▪Encourage lattice collaborations to compute quark and gluon energy/momentum fractions of 
other baryons.

▪ Compute heavy quark (c, b, t) sigma terms of other baryons to understand mass decomposition 
and trace anomaly at higher energy scales/                 QCD.

▪ Apply new results in dark matter models.
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Light front-coordinates
▪To evaluate the integrals, it is convenient to make a change of variables to light-front 
coordinates.

▪Longitudinal and transverse components:



Strange quark correction to the data
▪ Strange quark mass used in lattice simulations are larger than physical.

▪ Since fits are in light AND strange quark planes, we can extrapolate down to the physical strange 
mass.


