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P> Last time | presented the transition form factors of scalar
meson in 1+1-D scalar model as well as the fermion loop
calculation

» Both manifestly covariant method and light-front dynamics
calculations were done, and results found to agree, DR was
satisfied, although for the fermion loop case there is
singularity at the threshold which is still under investigation

» For the light-front time-ordered calculation, | showed how
choosing different component (It vs It~ for example), can
result in different LFTO amplitudes, however the sum of all
time-ordered contributions is the same as it must be. A new
definition of the each individual LFTO contribution was
presented.
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Last time
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Three diagrams contributing to the amplitude of a scalar meson going to 2 virtual photons in the scalar field theory

.47 —“/“/m/ (lul—Zu(
o

a(v)

©) ©)

™= P d?) (9" ¢ —a"q")

where

Ap=a(e —1)¢* + 2e(z +y = 1g-¢' + (@ +y)(e+y— 1) +m*
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This time

(D) ©

» Now let us calculate the transition form factor of a
pseudoscalar/pseudovector meson going into 2 virtual photons

» In 341-D this contributes to the axial anomaly
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Historical remarks on the axial anomaly
C. Adam, R.A. Bertlmann and P. Hofer, Riv. Nuovo. Cim. 16 (1993) 1

1. — Introduction.

1'l. Motivation and historical survey. - Generally speaking a quantum field
theory is called anomalous when a symmetry that is valid classically (i.e. fulfilled
by the equations of motion) cannot be maintained on the quantum level.

The discovery of the axial anomaly has quite a long history. As soon as 1949
Steinberger [1] computed some Feynman graphs (that, in today’s language, contri-
bute to the anomaly) for the n°—s yy decay. He found that some requirements of
the axial symmetry were not fulfilled by his results, but this fact was too surprising
to be accepted, and, as a consequence, he left theory and became a Nobel
Laureate in experimental physics.

Later on it was considered, e.g., by Schwinger in 1951 [2] or by Johnson in
1963 [3], that the conservation of the axial current — an immediate consequence
of the axial symmetry — was violated for appropriately regularized current
operators. But even the importance of those results was not noticed in the
subsequent years.
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However, in the sixties the belief in the axial symmetry caused some problems.
The way this symmetry principle entered the computations in hadronic physics
was named PCAC (= «partial conservation of the axial current» — partial, because
when the fermions have masses there is no exact axial symmetry). For instance,
using PCAC, Sutherland and Veltman stated a theorem that predicted a strong
suppression of the decay of a neutral pion into two photons. But this result was in
contradiction to well-known experimental facts.

So, the situation was prepared for a real start of the anomaly story, and this
occurred in 1969. In this year Adler and, independently, Bell and Jackiw derived

the anomaly using Feynman-graph methods for quantum electrodynamics (Q@ED)
and for the linear g-model, respectively [4, 5] (therefore in honour of its discove-
rers the axial anomaly in four dimensions is often named ABJ anomaly).

The g-model was used to describe pion-nucleon physics, and so the anomaly
result of Bell and Jackiw solved the n°— ¥y puzzle: the anomaly corrected the
decay rate resulting from the Sutherland-Veltman theorem by a definite amount
that was in excellent agreement with the experimental results.

From that moment on the interest in the anomaly problem steadily increased.
It was noticed that in chiral gauge theories like the standard model of the
electroweak interactions the anomaly could spoil gauge invariance (e.g., by Gross
and Jackiw in 1972 [6]) thereby ruining the theory at least on a perturbative level.
Avoiding this leads to severe constraints on the particle contents of a theory (e.g.,
to the prediction of the top quark; moreover this «anomaly cancellation» mecha-

nism requires three quark colours to work and therefore supports QCD).
When you want to re-derive the anomalous n®— yy result within the quark
mode! then the number of colours must be three, too.
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Perturbative calculation of the axial anomaly in 3+1-D
Ryder's QFT book

9.10 Chiral anomalies

In QED and QCD, the only type of interaction between matter and gauge
fields is a vector interaction, of the form gy J,W* where W* is the gauge field
and J, ~ ﬂ)y#w is the vector current (internal indices being suppressed) of the
Fermi matter field. The vector current is conserved:

\ 31, =0, (9.242)

and this leads to a Ward identity for the vertex function: for the graph of Fig.
9.22, for example, whose amplitude is

We(p'|Tlp), (9.243)

current conservation implies
(p'-pHl,=q"1,=0 (9.244)
which is the Ward identity.
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In the Weinberg—Salam theory, however — more generally, in a gauge theory
of weak interactions, commonly called quantum flavour-dynamics or QFD —
there is also an axial vector coupling between matter and gauge fields,
gaJuW*, with _

o= Vrarsy- (9.245)

Simple use of the Dirac equation shows that

[8-“]2 = 2imyysy = 2mls. N (9.246)

Js may be called the chiral density. The axial current is not conserved unless
m =0, but (9.246) does give rise to an axial Ward identity, even in the case
m # 0. To keep matters simple, we shall consider below the situation when
m =0, so the axial current is exactly conserved. This simplification is amply
justified because the complications which arise in the massive case remain
unaffected by putting m = 0.
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The statements above are of course/purely formal\ What we now do is to set

about verifying them in perturbation theory. For the vector coupling, this was
done in Chapter 7; an expansion of the vertex function I', to order e gives the

9.10 Chiral anomalies 367

two diagrams of Fig. 9.22, and it is found that the Ward identity
‘ (p' = p)'I,=0

is indeed satisfied.
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An analogous expansion of the axial vertex is shown in Fig. 9.23, up to order
e3. In each diagram in the expansion, the lowest vertex is Y,Ys. an axial
coupling, and the others are vector couplings. What we find is that the last
graph, containing a ‘triangle’ closed loop of Fermi fields, fails to satisfy the
axial Ward identities, giving rise to the so-called axial. or chiral, or triangle

anomaly. The serious nature of this anomaly lies in the fact that, as has been
emphasised already, the Ward identity (and its appropriate generalisation in
the non-Abelian case) is essential to proving the renormalisability of gauge
theories; so the triangle anomaly threatens renormalisability of the Weinberg—
Salam model, which would be a disaster! The only way of saving renormalis-
ability is to ensure that the rotal contribution of the triangle graphs is zero, so
the anomalies cancel. This is a condition on the fermion content of the theory,
which, remarkably, turns out to be satisfied in the Weinberg—Salam model if
there exist quarks as well as leptons, and if the quarks carry an additional
SU(3) (colour) label.
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Fig.9.22. Expansion of the vector coupling between gauge and matter fields to order
e3.

+ + - +o

Fig. 9.23. Expansion of the axial vector vertex between gauge and matter fields to
order e3.
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Let us now consider the fermion triangle in Fig. 9.23. (Actually, it is not only
the AVV triangle (A = y,ys vertex, V = y, vertex) which contributes to Ff,,
but also the AAA triangle, and also square and pentagon configurations, which
occur in higher orders. It turns out, however, that when the anomaly is
cancelled in the VVA graph. it disappears in all of them, so it is sufficient to
consider the VVA triangle. It also turns out that the anomaly is unaffected by
radiative corrections. So, again, we need only consider the simplest VVA
graph. For details of these matters, the student is referred to the literature.)
There are two contributions to it, shown in Fig. 9.24. The fermion contribution
to the amplitude (i.e. we ignore the gauge field propagators) is

Twou(P1s P2) = S P P2) + Sau(P2s P1)s (9.247)

since the second graph in Fig. 9.24 is obtained from the first by interchanging
K</, p;<> p,. The Feynman rules give (ignoring the coupling constants,
which in a real process will depend on 6v)

S (prs p2) = —(—i)} d*k (K i i i )
w(P1s P2) ( I)J(zm“ﬁ Y k_ﬂl_m7y75k+ﬂ2_mYAk_m

Putting m = 0 (see above) gives

r{ve(K — #D)yuyvs(K + 11{2))’11‘/].
(k = p1)*(k + p2)*k?

S = —(2m)™* j dtie L (9.248)
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TuYs

Fig. 9.24. The triangle graphs.

Tq =p+P
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The expected Ward identities. following from conservation of the vector and
axial currents at the three vertices, are

(pl + Pz)‘urmm =0 (A)v
PiTau=0(V), (9.249a. b. ¢)
PiTa. =0 (V).

The (V) identities follow from conservation of charge, and what we shall show
is that, if these two hold, then the (A) identity (9.249a) does not hold, unless
we impose extra conditions.

Note, incidently, that S is a linearly divergent integral. Also. it is symmetric
under the intercharge (pi, k) <> (pa, A), so that the presence of the crossed
graph in (9.247) simply results in a factor 2. Hence the identities (9.249) should
apply to Sy, alone.
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The source of the fallacy is that changing the variable of integration (as in
(9.253)) in a linearly divergent integral changes the value of the integral by a
finite amount. The divergent part of S,y is

Tr (v yuyskvik)

kS '
If k is shifted to k" = k + a, the change in S, is calculated using the following
considerations

S = —(2m)~* j d*k (9.255)

fd*kF(k) =fd4k'F(k' —a) = fd“kf[p(kf) - “%f s

The last term is changed into a surface integral by Gauss’ theorem. In our
calculation, F ~ k™. so since the hypersurface ~ k°, the surface integral is
non-vanishing. To find its value, putting k, = (k + a), in (9.255), gives

Skiu = Seip + U™ (9.256)
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where

U = ~Cony ot S Ttk

—(2m) fd4 [Tr (vskv: km! u)]

Now we use the trace formula

9.10 Chiral anomalies

Tr(YSYpY&YUVKYr}/u) = 4i5kr,uzx(6gg).a - 67.gﬁ17 + 633/)}.)
- 4i€platy(61acgm - 6?81@( + 6zgxr)
which gives

Tr (vsKyallyy,) = 4k k.

(9.257)

371

(9.258)
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Hence

4i o8 (ke
Uy = ——— 5 fd k (_) (9.259)
. emt T ek g

We transform this integral to a Euclidean space, so that k, = iky. Then we
observe that if o # v the integral vanishes, since it is odd in k; and if & = v we
have (k%)* = 1k2 (a=1, 4) So, transforming to a 3-dimensional surface
integral yields (using ﬁg dQ 277 for §3)
k
)

k
K/L v k (_)
! j Ak®

= —;ngi.uv§(d3 SE)«F

4
UKAMV = —‘_4£K/luozf ddk
(ZW)

-1
(2m*

1
= (9.260)

k k&
swvgﬁ na 4Q)-
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Referring back to the change of variable introduced in (9.253), we see from

(9.256) and (9.260) that S,;, should be replaced by

, 1 ,
Sk/lu(ph Pz) = '_2'£K),uvp5
87

and therefore the Ward identity corresponding to (9.249b) should now read

2

7

1 K_V
p[l('szdlu = ==&l 1P2-
8m

Similarly, (9.249¢) becomes

e - 1 i
P2diu = ——ngi.uvp 2P 1,
8

(9.261)

(9.262)

whereas the axial Ward identity (9.249a) remains satisfied. We see that it is
impossible to satisfy both the vector and the axial vector Ward identities, but of
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the two the V identity has more right to be regarded as sacrosanct because it
corresponds to conservation of charge. In order to retain (9.249b, c), then, we
redefine the amplitude for the triangle graph to be (cf. (9.247))

' 1 v
Tiu(p1s P2) = Siu(P1s P2) + Sicu(P2, P1) H ;‘SK).uv(Pl - p2)" | (9.263)

i

which satisfies the Ward identities (cf. (9.249))

PTTL/_u =0 (v)v
PiT i, =0 (V), (9.264a, b, ¢)
’ 1 v
(p1+ PTG, = kalyvpgpl (A).
T

The vector Ward identities are now satisfied, whereas the axial Ward identity

contains an anomaly, which no method of regularisation can avoid. Indeed, in

dimensional regularisation the existence of the anomaly is already hinted at by
the impossibility of defining a suitable generalisation of ys in d dimensions, as
mentioned above.
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On reworking the above calculation in the case of massive fermions (m # 0),

it is seen that the axial anomaly is unchanged. On the other hand, in the
massless case, the fact that the Ward identity (9.264¢) contains an anomaly
indicates that the axial current Jf, is not conserved, i.e. there should be an
additional term in (9.246). In fact, it is not difficult to see that amending
(9.246) to

31T, = 2mls [+ —F T (9.265)
8

where FM (the dual of F**) is defined by (2.234), yields (9.264c), since

I

FuF™ = 36,,,0(3* AY — 3" AN (3P A" — 37AF)

Il

26,1  AYBP A”
342600 A 3P A7), (9.266)

uvpo

Further, since this term is a total divergence the ‘new’ axial current
—— Euypo AP AC (9.267)

is divergenceless in the limit m = 0:
35
iy =0 (m=0),

but is not gauge invariant, so cannot be considered as a physical current.
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Anomaly-free condition

S0 =0; (9.274)

that is, the sum of the electric charges of the left-handed fermions should be
zero. In the Weinberg-Salam model with leptons only, this is not satisfied.
‘When hadrons — quarks — are included as well, however, we have, for the case
of one generation, and quarks with three colours

Q.+ 0, +3(Q,+ Q) =-1+0+3G-3=0; (9.275)

the chiral anomaly disappears, and renormalisability is restored. This condition
clearly remains intact if other generations of particles are added with the same
charges as the first generation. This is the case for (u™, v,, ¢, s) and (77, v, t,
b). The anomaly-free condition (9.274). then, appears to shed some light on
lepton—hadron symmetry, but allows for an arbitrary number of generations. A
solution to the generation problem must be sought elsewhere.
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Pseudoscalar triangle diagram in 2 dimensions
The total amplitude " is of the form

M = F(q% ¢*) T"*’ q0qjs

In 4 dimensions, T8 = civaB byt here in 2 dimensions, THY8
is taken to be

THVaB — (gﬁwgaﬂ 4oeHv gaﬁ) ’
which satisfies
8ua TH P = 0; g,3 TP =0.
So that current conservation
q.n " =0
and
g,M =0
are satisfied. The total amplitude is
M = F(q*,q?) (—g“”eaﬁ Gaqh — g - q’) -
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So, the form factor is
[Hv

F 27 12 — .
(q q ) —g“”Eaﬁqaqlﬁ—E”VCI'CI,

Contracting the symmetric and anti-symmetric tensors g, and €,
to the amplitude respectively, we get

gu "

2 2\ __
F(q 7q )_ _2Ea5qaq/ﬁ

and

24/53



The amplitude " is calculated as such, following the Feynman
rules.

S O

d?k
- 2

—ie’gN, | ——
e” g /(271_)2

Tr [v°(p — K+ m)y"(p — k — ¢ + m)y”(—k + m)]
((p—k—q)>—m?)((p— k)2 — m?) (k? — m?)
(

Tr [V5(p — K+ m)y" (g — K+ m)y(— k+m)]}

((p— k)2 —m?) (k* = m*) ((q — k)? — m?)
We have

Tr [7M7V7p70’75] — _2(g/u/€pa _|_gPU€lW).
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We obtain

e =iegh / ((2j72;l)(2(—2m) { [—(p — k)P (p+ k= q)s

+ g ks — e (p — K)s(p — k — q)”

+€u5q5ku + guumZ}

(o= k= = ) ((p— K7 — m?) (12— )]
+ [—(p — k)M qs + kMe"(2p — k — q)s — (g — k) e" ks

_qugzzé(p o k)5 _ Euumﬂ

(o= K2 = m?) (2 = ) (g = 7 = )] ' }.

-1
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After doing the Feynman parametrization, this becomes

_ a2 Nm 1 1—x 2
pov — 1€ 8em /d/ d /dzli
272 0 X 0 4 1(/12—A1)3><

[— (1=x)g+(1-x-y)g)" e”d (xa+(1+x+y)d),
+q"c”’ (xq+ (x +¥)q'),
— " (1=x)g+ (1 —x—y)q), (~xq+ (1 - x—y)q)
+¢"°g5 (x+y)q' +xq)"

e m? 4+ e ks — /1“5“5/15]

v

+/d2lzﬁ X [f (A=x-y)g+ 1 —x)q)"*qs
+((x+y)g+xd) e’ (1= x—-y)g+(2-x)q),
— (A =x=y)a—xq)"e" ((x+y)a+xdq),
—q"e” (1= x—y)g+(1—x)q),
M m? e s + /56“5/25} } ,

where for ;" we made the momentum substitution k — h + (x + y)p — yq
and for %" we made the substitution k — kh + xp + yq,
Ar=x(x—1)¢° +2x(x +y = 1)g-q' + (x + y)(x + y — 1)¢* + m*, and

Dy =x(x—1)q? +2x(x +y —1)g- ¢ + (x + y)(x +y — Dg* +-m”. 27/53



guuTH”

To calculate the form factor from F(q?, ¢"%) = —peadg.q» We do
(]

1—x
P gN m 5 2
gl = / o | "y{/d "y

[—5 ((1—x)q+(1—x—y)q)y (xg+(1+x+y)q),

+equ (xq+ (x +¥)q'),

e (1=x)g+ (1 =x=y)q); (—xa+ (1 -x-y)q),

+e"gs (x+y)q +xq),

+e" hyhs — 8“6/1u/15}

Jr/d%gﬁ X [76“5 ((1 —x—y)g+(1 fx)q/)# gs

+e” (x+y)g+xq), (1 —x—y)g+(2-x)q'),
e (L=x=y)a—xd), ((x+y)a+xq),
—q (1—x—y)g+ (1 -x)q),

" by bos + 5“5/@/25} }

egNm of lx 1 1Y)
o —2¢ qaqﬁ /dx/ (AZ—A—% =0.
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e MY
2qq/ ’

—ie’gN.m (1 1=x 2
S =—"5— [ d / d /d2/ ——
” 22 /o *Jo y{ RCEYS

[~ (1=x)g+(1-x—y)d)  (xa+ (1 +x+y)q)
+q-(xq+ (x+y)q)

+((1=x)g+(1=x—y)d) - (-xq+ (1 - x—y)q)
—q- ((x+y)qd +xq)

—2m? + 2/12]

| Py < 0

((

+((x+yq+xq) (1=x=y)g+(2-x))
)
(

we do

To calculate the form factor from F(q?, ¢"?) =

Y)a+(1-x)d)-q

+((1—x— — xq (X+yq+xq)
—q~((1—X— y)a+(1=x)q)
+2m? - 213]}
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. 1—x
B egNm/dX/ dy{
0

- ((1—x)q+(1—x—y)q’)'(xq+(1+x+y)q’)
+q-(xq+ (x+y)q)

+(1=x)g+ (1 =x—y)qd) (—xq+ (1 —x—y)q)
—q- ((x+y)d +xq)

—2m* — 2A4]

ke [(1=x=y)g+(1-x)q)-q

+ ((x+y)g+xd) - (1—x—-y)g+(2—x)q)
+((1=x=y)g—xq) - ((x+y)a+xq)
—q-(1—x—y)g+ (1 —x)q)

+2m* + 2A,] }
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_eZgNCm /1 /1—x { 1
=— dx dy{ — (—yg-q —2m?
T 0 0 A% ( )

+ — (yq-q’+2m2)} =0.

A3
So, since both the symmetric and anti-symmetric parts of the total
amplitude is zero, we conclude that the pseudoscalar transition

amplitude itself is zero
M =0.

» Future work on this: calculate in light-front time-ordered
formulation to confirm the results.
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Axial vector triangle diagram in 2 dimensions (AVV)

p—k(F) a(v")

—k(F)
- k q ‘ I
P(P) qm
k(F) P(P) K(F) P4l

P=4q(v")
©

Now let us calculate the transition form factor of an axial vector
meson going through the fermion triangle loop, and transitioning
into 2 virtual photons. The amplitude ['"*¥ is calculated as such,
following the Feynman rules.

e T Y

5 d?k
=ie gNC/(27r)2
{ r [P0 (p — K+ my(p — K — g+ m)y(—k+ m))

(p—k—q)%—m?)((p— k)? — m?) (k2 — m?)
Tr [ (p — k+m)%¢—k+mh%—k+mﬂ}
: .

T =k ) (K= m?) ((q— k)2 — m?)
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Using in 2 dimensions

Tr [v%”‘v“vﬁ 7”797”}

— 2gaugﬁug9/ﬂ _ zeaugﬁvgf?p _ 2gaugﬁV€9p + 2gaﬁgulf€9p _ 2gowguﬁf_:9p’

puv __ _iengC 2 ap _Brv _Op ap _PBr _0Op ap _Br_6p afl _pv _6p
I =52 d“k g e gte g g +tg g e —g g e

+g°‘”g“ﬁ€9‘)) (P = K)a(p — k= q)s(—k)o + m*(g*"e"”" +*g"")(p — k)a
(847" + g ) (p — k — ) + (g + & g ") (—k)o]
({507 =7) (01— (=)

+ [(gfwgﬁugep + gavgﬁugﬁp + gtwgﬁusep _ gaﬁgw69p
878" - (p— K)a(q — K)s(—K)o + mP(g""<" +="5")(p — )

(g7 + =g )(q — K)s + (8" + = 5") (K)o

(47 ) (o) (a7 )] .
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After doing the Feynman parametrization, this becomes

[PHv

I'ngNC 1 1—x 5 2
= 27[_2 / dX/ dy/d llmx
[((17X )a+(1—x—y)a)"e™ (~xq+ (1 —x—y)d), (xa+ (x +)d)"

H((1=x)g+1=—x=y)q)_ (—xa+ 1 —x—y)q)" (xa+ (x+y)q)"
“(—xq+ (1 —x-y)q) e (xq+ (x+y)d),

+
+(1=x)g+ (1 —x-y)d

/

1-x=y)a)" (—xq+ (1 —x—y)d)" " (xg+ (x +y)q'),

)q')
1-x=y)q) - (—xq+ (1 —x—y)q) g""e” (xq+ (x + y)d),
)q')
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+—#5B”h5(xq4+(x4+y)qquflfsﬁ”(—quF(lgfx——y)qﬂﬁlf

—(1=x)g+ 1 —x—y)d) ™ hslf

+e™hall (xq+ (x+y)q')" — ™ ha (—xq + (1= x—y)q')" I/

— e ((1=x)g+ (1 -x—y)q) KIf

+ IR (xq+ (x+y)d), = (—xa+ (1 —x—y)q)" e hg

—(1=x)g+ (1 —-x—y)g)" 1% Iy

g (xq+ (x +y)q), + h- (—xq+ (1 —x—y)q') g ho

+((1=x)g+ (1 —x—y)qd)-hg""he

+ K" (xg+ (x+y)q), = (—xq+ (1 —x—y)q')" e hs

—(1=x)g+ 1 —x—y)d)" 1"

—m? (1 —2x)g+2(1 — x — y)q')" " + m*e"* qag"”

+m’g"e” (xq+ (x +y)q'), + m’e" (xq+ (x + y)q')p}
+{p+rv&qgeqdl.
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Let us check first the axial vector current conservation
(g+4d),r" (A)

(qg+4q"),r"H*

- ’ii’;" /'1 dx/ollix a [ Ph i Ay _2A1 %

[leq+17x na' )" e (- m+ufxfy)) (@+d)- (xa+(x+yd")

+e (A=xa+@=x=13d) (=xa+@=x=yd)" (@+d): (xa+(x+y4d)
+(1—xq+ (1-x—y) )“ (—Xq+(1—x—y)q')use” (Xq+(><+y) ') (@+d),

Olqu+1fx7ym) ()@+fofqu He p(m#%X+n )(q+¢»

+(1—xq+ l—x—y)q)V(—Xq+(1—x—y)q’)“60p (Xq+(><+y)q)9(q+q')n
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+ 1P ga+d) - (Xq+ (x +y)q') Ny (*Xq +(1—x- y)q’)[i (g+4q') 1
“
- ((1 —x)g+(1—x— y)q’) P hgla+q)h
v
+ e holf (g +4q") - (Xq +(x+ y)q') — e, (7xq +(1-x— y)q') (a+4d)h
— e (1=xa+ (@ —x=yd) Ka+d)-h
v
0P (xq+ (X+y)q')9 (a+4d), —1f' (*xq +(1-x-— y)q’) %hp(a+d)o
7
~(@=xg+ @ —x=0d)" 1" he(a+ ),
2
— "R (Xq +(x +y)q')9 (G+3d)p+h- (7)«1 +(1—x— y)q') g% ho(a+d),
+(@=xa+@—x=y4q") hg" e hola+a),
o
0P (xq +(x+ y)q')e (a+d)p — I (*Xq +(1—x— y)q') %he(a+4d')p

— (@ =xa+@—x=d)" }ehea+d),

M j7xe%

2 2
—m (= 2xq+20 —x—y)a')" P(a+d), + meHqala+ )

+mPghy P (xq +(x+ y)q’)e (a+d)p+m* e (a+d') (Xq +(x+ y)q’)]

+{;_L<—>V&q<—>q'}.
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We get

guw(q+q),rP

e’gh, 5 1 1=x 1 1
= cm?(2e*Pqnq / dx/ dy(—y < - ) =0.

and

ew(q+q), M

—e*gNe , we [fo [T 11
= m°(qg+q / dx/ dy ( — ) =0.
m ( ) 0 0 A2 A3

So the axial vector current conservation is satisfied.

PP =0,
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Let us check another current conservation

qu*" (V)

aurg

e“ g,
:'gi/w/i w/dhﬂ TOEls
1

[ (@=xa+0=x=yq") " (~xa+@—x=1d) (xa+(+xd)"

+EW%O—XM+O—X—YMUQW( W+U—X—MqY(m+&+yW)
+q- (0 =xa+10=x=93d") (—xa+@—x=ya)" " (xa+(x+3d),
(=09 + @ =x=y3") (—xa+ @ =x=35") """ (xa+ (x+)d),

+(=xa+@=x=»3d)"q- (—xa+@=x=ya") " (xa+(x+3d"),
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+a-hehg (xa+ (x93 )" = a-he” (—xa+ @ =x=yd) I
-q- ((1—X)Q+(1—X—Y) ) PYhgip
+ M haquly (xq+ (x +y)q')p — e haaqu (*xq+ (1—x~— y)q’)” Iy
— e ((1 —x)q+ (1 —x — y)q/) auif 1f
q- iy e’r (Xq+ (x +y)q’)9 —q-h (fxq +(1—x— y)q')" %% hg
-q- ((1 —x)g+(1—x— .v)q’) e,
— g (xq + (X+y)q') + - (fxq+ (1—x— y)q') q"e% 1,
+(@=xa+ 1 —x=y)3') he'e"he
+ g1 (xq+ (x +y)q’)9 - Ka- (—xq+ (1—x— y)q') %% hg
- ((1 —x)q+ (1 —x— y)q,)u a-hehg
— m2q . ((1 —2x)g+2(1 — x — y)q/) evf + m26“aqaqug""

+m?q”ef (xq + (x+ y)q')a +mPet gy, (xq + (x+ y)q')p] .
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And

M

N,
:legc/dx/ W [ g <
2

Kﬂ_ﬂq+a—x—mﬂ ﬁ“cﬁq+u_x_”ﬂﬁ%‘Qq+x+y@p

+e%
+ (=00 + 0= x=a)" - (=xa’ + @ =x=ya)’
_ ((17X)q’+(1fxfy)q)»(*xq’+(1fxf}’)q) il (Xq ot e

q e
(u7m¢+ufxfw@(*4+qu*”@ ¢ @q+u+y@9

((17x)q’+(1*X7Y)q)(,q‘ (7Xq/+(17xfy) ) (xq + X+yq)p
(xq +(x+y<7)0

0

+q-
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+ l{sB“lzgqu (xq/ + (x+y)q)p - 12'/53“ (7xq/ +(1—-x— y)q)ﬁ auly
—(@=xd + = x=ya)" " hgqulf
+s”@w»b0¢+u+n@”—s”@w-(ﬂa+u—x—w0$
— e ((1 —x)q +(1—x— y)q)a q-hlf

+1hq- /259" (xq/ + (x +y)q)9 —¥q- (7xq/ +(1—x— y)q) Eeplzg
- ((1 —x)q" +(1—x— y)q)V a-he?hy

— ¢V 3% (xq' +(x+ y)q)e +h- (fxq’ +(1—x- y)q) a"% by
+(@=xd" + (1= x=)q) b’ by
+m&59p@¢+0+nﬂe—qh(—m“ﬂl—x—nﬂyg%s
fq'017@4+ﬂfxfyh)§gp%
—#(O—2w¥+20—x—ymy€“%u+m%”W;f

+mq” <% (xq’ + (x + y)q)9 +mt e a (56 + o+ )a)" ]
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We get

and

gpl/q,urleW = gpuqurﬁgw =0

/V 1—x

But

PU—X—yw@'q)—qu—@Wmm@ﬂ
—2m?q- ((1—2x)q + 2(1 —x—y)qd)]

N 1—x
L] v

{—Xy [(q-q) - q’q” (5“5%%)]

+2m?q - (2xq' + (2x +2y — 1)q)] .

(q-9) - a°d* — (c*Pqaq})> = 0.
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And from numerical calculation, both the 2m?g? term
1—x
(1-2x) 2x+2y—1
dx/ dy< + >
/ A A3
and the (2m?)(2q - ¢') term

R A )

are 0 for general values of g% and q’2. So the vector current
conservation is satisfied.

g = 0.

» Future work on this: Calculate two-point function to find axial
anomaly.
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Not triangle diagram
arXiv:hep-th/9902199v6 4 Jun 1999

We now set up the framework for calculating this anomaly. The Lagrangian of QED,
with one flavour fermion in Euclidean space is read as follows [4]:

- 1
L:w(w—gA—m)u—ZFwF,w. my =12, (1)
where the y-matrices are chosen as the two-component form
M =02 Y2=—01, V=—iN72 =03 (2)

Classically, the following vector and axial currents

2

Ju =0, G =Wt (3)
satisfy the relations

Byl =0, By, = 2imjs )

with j5 being the pseudo-scalar current, js=v:
In QED, the chiral anomaly comes from the two point function [9]

(@ = y) = (T[ju(2) 0 y))- (5)

11

where the chiral anomaly comes from the
or currents. Due to the explicit relation iy,

ontrary to_the four-dime
omposed of the axial and ve

i< relevant ta the vacnnm nalarization tencar

= €N

45 /53



Overview on the Anomaly and Schwinger Term
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The simplest of all theories that show the axial anomaly is quantum electrody-

namics in two-dimensional space-time, QED,. One reason for us to do all compu-
tations in this article for that model is, of course, its simplicitv. The different
modern approaches to the anomaly we mentioned above in principle need quite an
advanced mathematical apparatus and tedious calculations. But in the simple
model of QED,, when we present different treatments of the anomaly, the
computations usually will not exceed several lines.

QED., however, is interesting as a model for its own, too, although it has only
little direct physical significance (when space-time is taken to be Euclidean, QED,
may be identified with an electron restricted to a plane moving in a magnetic field
perpendicular to that plane {22]).

First of all, it was observed by Schwinger in 1962 [23] that when the fermion of
the theory (the «electronv) is massless, the model is exactly solvable. For this
reason massless QED, is called Schwinger model.
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In fact, the model is equivalent to the theory of a free, massive scalar particle
of mass = e/ﬁ. where e is the electron charge [23, 24-26]. This massive mode
may be interpreted as a fermion-antifermion bound state — that fails to separate
— Or as a mass contribution to the photon. (We want to emphasize that those
different interpretations by no means change the physics and merely reflect
different approaches to the model. In an operator solution of the model the
bound-state interpretation is natural, whereas in the path integral approach, which
we will prefer in most of the article, the photon mass term will occur. And this
photon mass, too, will emerge as an immediate consequence of the anomaly.) As

a consequence, there are no asymptotical fermion states in the theory and you
may say that the fermions are «confined». This feature is not too surprising,
because in two dimensions the electric potential obeys a linear power law, and
some potential models which are used to describe the confinement property of
QCD in an effective way use linear potentials, too.

Some further properties that are expected to be important for QCD are present
in the Schwinger model. Instantons exist because the boundary of space-time, S',
equals the gauge group manifold, U(1) ~ S'. Due to the occurrence of instanton
configurations, vacuum condensates are formed. For instance, the non-vanishing
value of the vacuum expectation value of the scalar density { Y¥ ) #0 is
precisely caused by fields with non-zero instanton number, as can be nicely
demonstrated within the path integral approach |27, 28].

Summing up, we see that the Schwinger model, in spite of its simplicity, in
many respects is an interesting model for features of QCD. Besides, it may be used
to test new methods that are developed to deal with more complicated models like
QCD [29-31].
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When the fermion acquires a mass, not all surprising features of the mode]
survive and the model cannot be solved any longer. Nevertheless, it remains an
interesting field of research (see e.g.[32, 22]).

Concerning our main theme, the axial anomaly of QED,, there is no difference

between the massive and massless cases. The expression for the anomaly is
completely independent of a possible fermion mass term.

1'2. Some introduciory remarks. — Before we start the computations, some
considerations are in order as a guide through the article. The anomaly we are
dealing with is associated to the axial symmetry. Axial transformations only exist
on fermions in an even space-time dimension. Further, when the axial symmetry
is spoiled by quantization of the fermions, we have to examine loop diagrams
because only loops reflect quantum properties. Loop diagrams only contribute in
interacting theories, so we choose the simplest gauge interaction in the smallest
possible space-time dimension, QED,.

Now we should look at the concept of symmetry more closely. It is easy to
understand what symmetry means on a classical level. The Lagrangian or equa-
tions of motion are simply invariant under a certain transformation of the basic
fields. But how can a symmetry be transferred into quantum field theory? One way
of realizing a symmetry on the quantum level is the concept of Ward identities
(WI). WI are identities between different n-point functions of a theory and can be
derived in a formal way from a classical conservation equation (%-point function
or Green's function just means the vacuum expectation value of a time-ordered
operator product).
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 Let us choose as a simple example a free spinor field with Lagrangian

L= Y¥i7¥. Because of the symmetry with respect to a pure phase transformation
the free-fermion current J, = ¥y,¥ is conserved, arJ » = 0. Next, let us recall
some simple properties of time-ordered operator products like

T(A@B(W) = 0 (x, — Yy A@ B + O (yo — 2) B(y) A(x)
and
HT(A@DB)) = 80,0 (2 — ya) [A(@), B()] + T(0FA(2)B(Y)) .

If we believe in the conservation of the quantized current operator and in the
canonical (anti-) commutation relations, we may formally derive identities like

0T, (@), (y))]0> =0

or

IOT, @ P (DFE)I0) = ~OIT(P (PN (@ —w) +
+LOIT(F WP @)I0)o(x—2),

which are called@ We want to emphasize, however, that neither of the two

requirements stated above needs to be true in general (this will be demonstrated
in later sections).
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A real quantum check of such WI is done by computing Feynman graphs
contributing to the n-point functions in perturbation theory (see sect. 2). There
the following situation occurs: as long as the contributing graphs are finite, they

OVERVIEW ON THE ANOMALY AND SCHWINGER TERM IN TWO-DIMENSIONAL QED 5

lead to a unigue result and fulfil the expected WI. When divergent diagrams
contribute to a Green’s function, however, they need regularization and therefore
do not lead to a unique result. More precisely, the Green's function may be
changed (in momentum space) by polynomials in the exterior momenta (which
are called «seagulls»), where the degree of the polynomial equals the degree of
divergence of the most divergent diagram.
So the addition of a seagull may destroy or restore a WI. This may lead into
troubles if we suppose for an n-point function more than one WI to hold. It may
appen that no seagull can be chosen as to fulfil all required W1. When this
situation occurs we speak of an anomaly. One usually prefers one symmetry on
physical grounds and associates the anomaly entirely with the other one.
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The axial anomaly in QED, stems from the two-point function
Q) Thy (@ = 1) = T, (@ T3 (1)) Y

whose fermion loop is depicted in fig. 1.
In two dimensions the relation

(*) Our conventions are as in [49].
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p-q
Tu s
4
Fig. 1. — Fermion loop containing a vector and axial current.
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g" T (@) =0,

1
Q" Ty (@) = 2mP (@) + = q*¢,,,
T
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