Manifestation of quantum correlation in the interpolating helicity amplitudes

Deepasika Dayananda¹, Chueng-Ryong Ji² North Carolina State University

17th June 2021

e-HUGS

¹isamara@ncsu.edu ²crji@ncsu.edu

Quantum Correlation due to orientation entanglement of spins

- □ The angle should be rotated to get the same initial configuration.
 - Spin- $0 \rightarrow$ Any angle
 - Spin-1/2 \rightarrow 720⁰
 - Spin-1 \rightarrow 360⁰

- □ Spinors and polarization vectors
 - Spin orientation
 - Momentum of the particle

 $d_{m',m}^{(j)}(\beta) = < j, m' |exp\left(\frac{-i j_y \beta}{\hbar}\right)|j,m>$

(Wigner-d function)

Rotation by 180⁰

Spin-0 particles

 $|0,0\rangle \longrightarrow |0,0\rangle$

Spin-1/2 particles

 $|1/2, 1/2 > \longrightarrow |1/2, -1/2 >$ $|1/2, -1/2 > \longrightarrow -|1/2, 1/2 >$

Spin-1 particles

$$\begin{split} |1,1> &\longrightarrow |1,-1> \\ |1,0> &\longrightarrow -|1,0> \\ |1,-1> &\longrightarrow |1,1> \end{split}$$

Quantum –orientation entangled states

Quantum correlation in the interpolating helicity amplitudes ?

Interpolating Dynamic

Interpolation space time transformation

 We connect two relativistic dynamics, proposed by Dirac

Spin orientation for generalize helicity spinors and vectors

Spin-direction corresponding to the LF boosts in the z-direction only (LHS) and one including transverse momentum (RHS)

$$Cos[\theta s] = \frac{Cos[\alpha] + Cosh[\beta 3] + Cos[\alpha]Cosh[\beta 3] - Cosh[\eta]}{1 + Cosh[\eta]}$$

$$\cos \alpha = \frac{P_{\hat{-}}}{\mathbb{P}} \qquad e^{-\beta_3} = \frac{P^{\hat{+}} - \mathbb{P}}{M(\cos \delta - \sin \delta)}$$
$$\mathbb{P} = \sqrt{P_{\hat{-}}^2 + \mathbf{P}_{\perp}^2 \mathbb{C}} \qquad e^{\beta_3} = \frac{P^{\hat{+}} + \mathbb{P}}{M(\sin \delta + \cos \delta)}$$

Since $\Phi s = \phi$, without loss and generality we can make $\phi = \phi s = 0$

When, we fix the particle's initial momentum direction as +z,

We can simplify
$$\theta_s = 0$$
, $\cos \alpha \to 1$ $P_{2} > 0$ & $\theta_s = \pi$, $\cos \alpha \to -1$ $P_{2} < 0$

 \Rightarrow Indicates sign change of $P_{=}$

QC in Spin-1/2 spinors

$$U^{+1/2}(P_{\hat{-}} > 0) \Longrightarrow U^{-1/2}(P_{\hat{-}} > 0)$$
$$U^{-1/2}(P_{\hat{-}} > 0) \Longrightarrow - U^{+1/2}(P_{\hat{-}} > 0)$$

$$\begin{split} U^{+1}(P_{\hat{-}} > 0) & \Rightarrow U^{-1}(P_{\hat{-}} > 0) \\ U^{0}(P_{\hat{-}} > 0) & \Rightarrow - U^{0}(P_{\hat{-}} > 0) \\ U^{-1}(P_{\hat{-}} > 0) & \Rightarrow U^{+1}(P_{\hat{-}} > 0) \end{split}$$

<u>QC in spin-1 spinors</u>

QC in polarization vectors

$$\epsilon^{+1}(P_{\hat{-}} > 0) \Longrightarrow \epsilon^{-1}(P_{\hat{-}} > 0)$$
$$\epsilon^{0}(P_{\hat{-}} > 0) \Longrightarrow - \epsilon^{0}(P_{\hat{-}} > 0)$$
$$\epsilon^{-1}(P_{\hat{-}} > 0) \Longrightarrow \epsilon^{+1}(P_{\hat{-}} > 0)$$

Interpolating Longitudinal Momentum

$$P_1 = \{E_0, 0, 0, P_{\nu}\} P_2 = \{E_0, 0, 0, -P_{\nu}\} \qquad \bar{E} = 2E_0$$

We see $0 \le \delta < \frac{\pi}{4}$ range $P_{\widehat{-}}$ can get any real value, but exactly at the LF we do not see $P_{\widehat{-}} < 0$ values, since $P_{\widehat{-}} \rightarrow P^+$ at $\delta = \frac{\pi}{4}$.

• Change of K^3 from "dynamic" operator to the "kinematic " operator at LF

$$P_{1\hat{-}} = 0$$
, and $P_{2\hat{-}} = 0$, $P_1^+ \rightarrow 0$ and $P_2^+ \rightarrow 0$
 $P^z \rightarrow -\infty$

Helicity Boundaries

$$P_{1\hat{-}} = \left[(P_v P^z + E_0 \sqrt{\bar{E}^2 + (P^z)^2}) \sin \delta + (E_0 P^z + P_v \sqrt{\bar{E}^2 + (P^z)^2}) \cos \delta \right] / \bar{E} + (E_0 P^z - P_v \sqrt{\bar{E}^2 + (P^z)^2}) \cos \delta \right] / \bar{E} + (E_0 P^z - P_v \sqrt{\bar{E}^2 + (P^z)^2}) \cos \delta \right] / \bar{E}$$

It seems that the QC of LF is accumulated in the zero-mode

To see the QC in the zero-mode we consider total longitudinal momentum of the system

Zero-mode of the light front

 $P^z \to -\infty, (P_{\underline{-}})^T \to 0$

This further confirm that the QC accumulated in the zero-mode

 $\bar{E} = 2E_0, E_0 = 2, P_v = 1, M = \sqrt{3}$

Scalar particle and its anti-particle production by two neutral massive spin-1 particles

Fig. (a) t-channel Feynman diagram, the cross channel (u-channel) can be drawn by crossing the two final states' particles. Fig. (b) is drawn for the seagull channel.

v -> Vector particle (Spin-1)
s -> Scalar particle (Spin-0)

Interpolating helicity amplitudes

$$M_t^{\lambda_1 \lambda_2} = (-p_3 + q_1)^{\hat{\mu}} \varepsilon_{\hat{\mu}}(p_1, \lambda_1) \frac{1}{q_1^2 - m_s^2} (p_4 + q_1)^{\hat{\nu}} \varepsilon_{\hat{\nu}}(p_2, \lambda_2)$$
$$M_u^{\lambda_1 \lambda_2} = (-p_3 + q_2)^{\hat{\nu}} \varepsilon_{\hat{\nu}}(p_2, \lambda_2) \frac{1}{q_2^2 - m_s^2} (-p_4 + q_2)^{\hat{\mu}} \varepsilon_{\hat{\mu}}(p_1, \lambda_1)$$

$$M_{se}^{\lambda_1\lambda_2} = -2g_{\hat{\mu}\hat{\nu}}\varepsilon^{\hat{\mu}} (p_1,\lambda_1) \varepsilon^{\hat{\nu}} (p_2,\lambda_2)$$

Where $q_2 = p_3 - p_2$

T and U channels have time-ordered interpolating helicity amplitudes.

Seagull Channel

- Contact interaction Angular momentum is conserved without involving orbital angular momentum
- $$\begin{split} \epsilon^{+1}(P_{\hat{-}} > 0) & \Rrightarrow \epsilon^{-1}(P_{\hat{-}} > 0) \\ \epsilon^{-1}(P_{\hat{-}} > 0) & \Rrightarrow \epsilon^{+1}(P_{\hat{-}} > 0) \\ & |1, 1 > \longrightarrow |1, -1 > \\ & |1, -1 > \longrightarrow |1, 1 > \end{split}$$

Parity conservation

 $Mse^{--} = Mse^{++}$

$$Mse^{-+} = Mse^{+-}$$

[C-R . Ji, B.L.G.Bakker , International Journal of Modern Physics,(2013)]

$$P_s = \sqrt{3} \qquad P_v = 1 \qquad E_0 = 2$$

 $|1,0> \longrightarrow -|1,0>$

 $\epsilon^{0}(P_{\hat{-}} > 0) \Longrightarrow - \epsilon^{0}(P_{\hat{-}} > 0)$

• $Mse^{+0} = Mse^{-0} = Mse^{0+} = Mse^{0-} = 0$

Do not satisfy conservation of total angular momentum in any frame

 T and U channel helicity amplitudes depend on orbital angular momentum involving impact parameter. But they share the same feature LFD and Large Momentum Frame in the IFD

CONCLUSION

- We confirm QC in interpolating spin-1/2 spinors , interpolating spin-1 spinors and polarization vectors.
- Quantum correlation manifests itself as district boundaries in the landscape of helicity amplitudes when we change the interpolation angle and normalized total longitudinal momentum of the system.
- LF QC appears in the zero-mode (Quantum entanglement in the LF). This hints the 'a la Einstein's "spooky action at a distance " even in the LFD.
- Helicity amplitudes with higher interpolating angle values and lower momentums produce better LF results than the helicity amplitudes with large momentum values in the instant form dynamic.

THANK YOU

BACKUP SLIDES

$$u_{H}^{(-1/2)}(P) = \begin{pmatrix} -P^{L}\sqrt{\frac{\cos\delta-\sin\delta}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ -P^{L}\sqrt{\frac{\sin\delta+\cos\delta}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}+\mathbb{P}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{\sin\delta+\cos\delta}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{\cos\delta-\sin\delta}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \end{pmatrix} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{2\pi}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{\cos\delta-\sin\delta}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \end{pmatrix} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{2\pi}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{\cos\delta-\sin\delta}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \end{pmatrix} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{(\cos\delta-\sin\delta)}} \\ P^{R}\sqrt{\frac{2\pi}{2\mathbb{P}(\mathbb{P}+P_{\perp})}}\sqrt{P^{+}-\mathbb{P}} \end{pmatrix} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \end{pmatrix} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \\ \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}} \end{pmatrix} u_{H}^{(1/2)}(P) = \begin{pmatrix} \sqrt{\frac{P_{\perp}+\mathbb{P}}{2\mathbb{P}}\sqrt{\frac{P^{+}-\mathbb{P}}{2\mathbb{P}}}\sqrt{\frac{P^{+$$

Interpolating Spin-1 Helicity spinors

$$u_{H}^{(+1)} = \frac{1}{2\sqrt{M\mathbb{P}^{2}}} \begin{pmatrix} \frac{(P_{\pm} + \mathbb{P})(P^{+} + \mathbb{P})}{(A-B)} \\ \sqrt{2}P^{R}(P^{+} + \mathbb{P}) \\ \frac{(A-B)(P^{R})^{2}(P^{+} + \mathbb{P})}{(P_{\pm} + \mathbb{P})} \\ (A-B)(P_{\pm} + \mathbb{P}) \\ \sqrt{2}P^{R}(P^{+} - \mathbb{P}) \\ \frac{(A+B)(P^{R})^{2}(P^{+} - \mathbb{P})}{(P_{\pm} + \mathbb{P})} \end{pmatrix}, \quad u_{H}^{(-1)} = \frac{1}{2\sqrt{M\mathbb{P}^{2}}} \begin{pmatrix} \frac{(A+B)(P^{L})^{2}(P^{+} - \mathbb{P})}{(P_{\pm} + \mathbb{P})} \\ (A-B)(P_{\pm} + \mathbb{P}) \\ -\sqrt{2}P^{L}(P^{+} + \mathbb{P}) \\ \frac{(A+B)(P^{R})^{2}(P^{+} - \mathbb{P})}{(P_{\pm} + \mathbb{P})} \end{pmatrix} \end{pmatrix}, \quad u_{H}^{(-1)} = \frac{1}{2\sqrt{M\mathbb{P}^{2}}} \begin{pmatrix} \frac{(A+B)(P^{L})^{2}(P^{+} - \mathbb{P})}{(A-B)(P_{\pm} + \mathbb{P})} \\ -\sqrt{2}P^{L}(P^{+} + \mathbb{P}) \\ \frac{(P_{\pm} + \mathbb{P})(P^{+} + \mathbb{P})}{(A-B)} \end{pmatrix} \end{pmatrix} \qquad u_{H}^{(0)} = \sqrt{\frac{M}{2\mathbb{P}^{2}}} \begin{pmatrix} -(A+B)P^{L} \\ \sqrt{2}P_{\pm} \\ (A-B)P^{R} \\ (-A+B)P^{L} \\ \sqrt{2}P_{\pm} \\ (A+B)P^{R} \end{pmatrix}$$

