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- Key features of Poincare operators

* Spin operator
* Poincare Algebra
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Novel Interpolating Basis

The interpolating space-time coordinate between Instant Form Dynamic and Light-Front Vacuum are defined by a
transformation from the ordinary space-time coordinates,
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Note: In ordinarily Interpolation transformation in IFD, invert the direction of z direction in the IFD
(x~ > —x3).
: Orthogonal basis set for all interpolation angle

Novel basis

IFD (§ — 0), 7 — 20,21 — 21,22 — 22,2~ — 23

» Skew coordinate system ( all interpolation angle except § — 0)

LED (6 — 3), vt =zt , 2. — 2+ and VC — 0, therefore 2 and 2~ become indeterminate unless

we consider 27 =0 .
When § — /4 — € (€ is a very small value), The expansion of 27 and =~ can be written as
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This clearly shows that 2™ and x~ reach to same value for very small € values as § — /4
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Fig 01: " and 2~ vary with 2" and 2* for different § values
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Space-Time Interval

§? = rhy, = zhr; = ()2 — (21)2 — (22)2 — (z7)2
Momentum space for the particle mass M,P# P, on the mass shell is equal to M*

M2 — Prp, = P‘ﬂpﬁ _ {p—f—]i _ {PI}E _ (Péjz _ {PL:JE

Lorentz transformation related to the new interpolating basis can be written as
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After transforming bases using the Lorentz transformation
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Boost and Rotation operators in 4-vector representation
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* Similar to the et/ , but here we have e fayJ*®

e Itseems K! playthe role of rotation around y axis
starting from the IFD to LF vacuum with this new basis

* Kinematic operator K exclusively independent of
interpolation angle in the new basis
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Spin Operator

Generalized Helicity operator jg T. }3 T_
T3 =Jscosa+ (K2 - /}2)@) Sin a1

(20, 2!, 22, 2%)

T3 =—=(P=J; + P'K? - P2K1),

I
P

PE\/(Pﬂ - M*C = \/P%2 +P%C.

50, KlmoP, 2=l PaeP P I
(6= 7/4), Kl = —E|, K2 = —E,, P. —» PT P — /(P") =

Light-front helicity J3 =

- M?* = |P| J3 =

.}3 + %(P2E|

PHYSICAL REVIEW D 92, 105014 (2015)
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Generalized Helicity operator
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This valid for any interpolation angle in the basis, It seems the structure is invariant throughout
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Jackob-Wick Helicity
a = finite value




Poincare Algebra in the new basis ( 45 commutation relations)

L P P2 — D! D? J3 Kl K1 K3
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All the commutation relation has been calculated previously, are considered ordinarily covariant and contravariant form.
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o — %,P+ — 0, Kinematic behavior of the longitudinal boost

[\%W =0 [%.le} — iV/CP!
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i g2  Kinematic operators in all range of
interpolation angle
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J3 is kinematic operator for all
interpolation angle
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Infinite longitudinal momentum -> negligible P and P?

Commutation relations still give finite values



Poincare Generators in spinor representation

1704 H. BACRY and J. NUYTS

TasrLe I. — 4-dimensional representation of the Poincaré group.

rotations Mii — 3 itk

translations Pb =

I ] ic* | 0
pure Lorentz transformations Mok—=_ | R ,

where o#=(1, g) are the 2 x2 unit matrix and the usual Pauli matrices.
[ M, MO] = i(gre M* — gt M¥e— gie M2+ ghd B10)
[M#, P?] = i(g°PF— gepr”),
[P P'] =0,



Approach-1 One dimensional non-relativistic

e Time translation

t=t+a z'=z Commutation
a [+ 1 0 Relations
/ t a 03 I+o03
R I o B o Bl
0 1
[H, P3]=0
e Space translation in z-direction
37_ 13
t' =t z'=z+a, [H K°>|=-K
a, (I —
/ 1 O I + z 0-3 3 I—o03 0 0 [Ps K3 ]= K3
<t>= a, (t) z\ 2 p=(2)=0 1] '
Z’ O 1 + ? yA

* Boost in z-direction

t' =t z' = vt +z

(t’):[l 0 (t) 1+v<—01_i02> KBZ(Q_TWZ):;) 8]
z' v 11\z



2. The Lie Algebra of the 2 + 1 Dimensional Galilean Group
and its Central Extension

Let G denote the Galilean group in (2 4+ 1) space-times and Lie(G) 1ts Lie algebra.
We choose a basis for Lie(G) in which the infinitesimal generators of rotation, the
boosts along the two spatial directions, that of time translation and those of spatial
translation are denoted respectively as M,N,,H and P, (i = 1,2). The commutation
relations for these operators are

[P3,H]=0 (M,N]=e; N, [N,N;]=0,

T [P, H] =0, [P,P]=0,

[K®, P 1=0

[K3, H]=P3
[M,P;] =¢; P, [Ni, Pi1=0, /
[M,H] = 0, [N,H] =P, . (2.1)

In the above, g; is the antisymmetric symbol with £1; = —&7; = 1. Summation
convention for a repeated index is implied. The physical significance of the genera-
tors are well-known. M corresponds to the angular momentum in the plane, H the
Hamiltonian and P, the components of linear momentum.

The Galilean Group in 2 + 1 Space-Times

and its Central Extension

Commun. Math. Phys. 169, 385395 (1995)



2. Dynamical realization of the /-conformal Galilei algebra

The [-conformal Galilei algebra includes the generators of time translations, dilatations, spe-
cial conformal transformations, spatial rotations, spatial translations, Galile1 boosts and accel-
erations. Denoting the generators by (H, D, K, M; Iz CI.("}), respectively, where i =1,...,d 1s a
spatial index and n =0, 1, ..., 2[, one has the structure relations [3]

[H,D]=iH, [H,C"]=inc"",

|H,K]=2iD, |D,K]=iK,

[D.c]=in—nC™,  [K,c"]=i(n—20)Cc"Y,

(M. CP] = =i (8uCY” = 56C"),

(Mij, Mgl = —i(BiuM i + 8 Mix — 8yM jx — 8 M;p). (1)
Note that (H, D, K) form so(2, 1) subalgebra, which is the conformal algebra in one dimension.

The instancesof n =0andn =1 1n Ci(nj correspond to the spatial translations and Galilei boosts.
Higher values of n are linked to the accelerations.

Dynamical realization of /-conformal Galile1 algebra

and oscillators

Nuclear Physics B 866 (2013) 212-227



Approach-02

To include translation operator in the four-vector representation, we have to increase one dimension .
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Satisfy usual Poincare algebra



Translation operator P—= e—i a'uPM — e—igHVaI'LPV

e—iaOP0
eialPl
PY Operator in the {x0,x1,x2,x3} basis

P! Operator in the {x0,x1,x2,x3} basis
1 1

, 0 0 00\ /1 1 1 00 0 0\ /1

X -I—1a0 a0 1 0 0 O xl XO 0 1 0 0 0 .'X'O

AU el B | x'+al|=|al 0 1 0 0[]«

X3 0 0O 0 1 O x3 x2 0 0 0 1 O x2

X 0 0O 0 0 1 X x3 0 0O 0 0 1 X3
eia2P2 eia3p1

P2 Operator in the {x0,x1,x2,x3} basis P2 Operator in the {x0,x1,x2,x3} basis

1 1 00 0 0\ /1 1 L0000y /1
XO 0 1 0 0 0 XO XO 0 1 0 0 O XO
xl — 0 0 1 0 0 xl Xl — 0 O 1 0 O xl
x2+a2| (a2 0 0 1 0] |x? x? 0 00 1 0J}x
X3 0 0 0 0 1 X3 X3+Cl3 a3 0 0 0 1 X3



III. CONTRACTION OF LORENTZ GROUPS

Let us consider, first, the inhomogeneous Lorentz group with one space-

like, one time-like dimension. It is given by the transformatloqs cosh \ sinh \
x' = xcosh A + ¢tsinh A + a; : (26) sinh A cosh A\
t’ = xSinhh‘i—tCOSh)\-l—ag. _ O 0

form a natural, though not unitary, representation of the group of trans-
formations (26). We can carry out the contraction by setting a, = b,,
A = e, a, = e, or \ = v/c, a, = b;/c and letting ¢ converge to 0,
or ¢ converge to infinity. If we do this directly in (26a), the representation
will not remain faithful for the contracted group. We shall transform
therefore (26a) with a suitable ¢ (or ¢) dependent matrix: multiply the
first row with ¢, the first column with 1/c. If ¢ goes to infinity in the
matrix obtained in this way, one obtains the transformations of the con-

tracted group

x4+ ot + b, (27a)

t + b,.

Inonn, E.; Wigner, E.P. On the Contraction of Groups and their Representations.

Proc. Natl. Acad. Sei. (U.S.) 1953, 39, 510-524.
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2 Two-dimensional Euclidean Grouip and
Cylindrical group

The two-dimensional Euclidean group, often called E(2), consists of rotations and transla-
tions on a two-dimensional Euclidian plane. The coordinate transformation takes the form
r' = rcosa —ysina + u, Yy =rsina 4+ ycosa + v, (1)

This transformation can be written in matrix form as

!

u cosqy —sina U U
v | = | sina  cosa v Y (2)
1 0 0 1 1

The three-by-three matrix in the above expression can be exponentiated as
E(u,v,a) =exp (—i(uP; + vFP;)) exp (—iaLs). (3)

where L3 is the generator of rotations, and P, and P» generate translations. These generators
take the form

0 —i 0 0 0 i 0 0 0
Ly=1i 0o ol, A=1l00o0l, PB=l0 0 il, (4)
0 0 0 00 0 0 0 0

and satisfy the commutation relations:
[P, P;] =0, [Ls, P\] =P, (L3, P;] = —iPy, (!
which form the lie aleebra for F/(2).

Ay |
S

Kim. Y. S.; Wigner, E.P. Cylindrical group and massless particles. J. Math. Phys.
1987, 28, 1175-1179.



4. Contraction of SO(3, 2) to ISO(3, 1)

Let us next go back to the SO(3,2) contents of this two-oscillator system [4]. There are three
space-like coordinates (x,y,z) and two time-like coordinates s and t. It is thus possible to construct
the five-dimensional space of (x,y,z,t,5), and to consider four-dimensional Minkowskian subspaces
consisting of (x,y,z,t) and (x,y,z,s).

As for the s variable, we can make it longer or shorter, according to procedure of group
contractions introduced first by Inonti and Wigner [17]. In this five-dimensional space, the boosts
along the x direction with respect to the t and s variables are generated by

/0 0 0 i 0) /00 0 0 i
000 0 0 000 0 0
Ay=10 0 0 0 0f, Be=]0 00 0 0f, (28)
i 00 0 0 000 0 0
\0 0 0 0 0/ \i 0 0 0 0/

Poincaré Symmetry from Heisenberg's
Uncertainty Relations

Sibel Bagkal !, Young S. Kim >* and Marilyn E. Noz *



Let us then introduce the five-by-five contraction matrix [18,19]

/(1 0 0 0 0)
01 00 0
Cle)=10 0 1 0 0f. (29)
00010
000

\0 ¢/

This matrix leaves the first four columns and rows invariant, and the four-dimensional
Minkowskian sub-space of (x, y, z, t) stays invariant.

As for the boost with respect to the s variable, according to the procedure spelled out in
Refs. [18,19], the contracted boost generator becomes

(00 0 0 i
) 00000
B, = lim - [C_l(e) By C(e)}: 00000 (30)
00000
\0 0 0 0 0/



Likewise, B¢ and B¢ become
i z

(00000\ (/00 0 0 0)
000 0 i 0000 0
Bj=10 000 0|, B=|0000 i, (31)
00000 00000
\0 0 0 0 0 \0 0 0 0 0)

respectively.
As for the t direction, the transformation applicable to the s and t variables is a rotation,
generated by

( 00 0 0 O0)
0 0 0 0 0
Be=10 0 0 0 0]. (32)
0 0 0 0 i
\0 0 0 —i 0)
This matrix also becomes contracted to
(00 0 0 0)
0O 0 0 0 0
Bi=|0 0 0 0 0O (33)
0O 0 0 0 ¢
\0 0 0 0 0)



These four contracted generators lead to the five-by-five transformation matrix

(1 0 0 0 a)
01 0 0 b
exp{—i (aB§+bB;+cB§+dBf)}= 0010 cl, (34)
000 1d
\0 0 0 0 1)
performing translations:

(1 0 0 0 a) (1\ (:r-l—n\

01 0 0 b Y y+b

0 0 1 0 ¢ z|l=|z+c|. (35)

00 0 1 d t t+d

0o 0o o0 1/\1/ \1

This matrix leaves the first four rows and columns invariant. They are for the Lorentz
transformation applicable to the Minkowskian space of (x,y,z,t).



Conclusion

* Kinematic Poincare generators in the basis of scaled interpolating variables produce
similar matrix structures of them in the Euclidean basis.

« The kinematic operators K' , k2 plays the role of rotation around y and x-axes in the
new basis for all interpolation angle

* Translation operator matrix structure is more non-trivial in the Four vector
representation

Future work

* Try to find the four- vector representation of the translation operators in the four
dimensions.

* Understanding the extra dimension in the (5x5) matrix in the four- vector
representation of translation operators



Thank you



