Poincare Algebra with Scaled Interpolating Variables.

07-01-2022

Deepasika Dayananda

Out Line

- Summary of the last talk
 - Novel basis set of the scaled interpolating variable
 - Key features of Poincare operators
- Spin operator
- Poincare Algebra
- Translation operator
 - -Different approaches and references

Novel Interpolating Basis

The interpolating space-time coordinate between Instant Form Dynamic and Light-Front Vacuum are defined by a transformation from the ordinary space-time coordinates,

$$\begin{pmatrix} x^{\tilde{+}} \\ x^{\tilde{1}} \\ x^{\tilde{2}} \\ x^{\tilde{-}} \end{pmatrix} = \begin{pmatrix} \frac{\cos\delta}{\sqrt{\mathbb{C}}} & 0 & 0 & \frac{\sin\delta}{\sqrt{\mathbb{C}}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{\sin\delta}{\sqrt{\mathbb{C}}} & 0 & 0 & \frac{\cos\delta}{\sqrt{\mathbb{C}}} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$$

 $x^{\bar{\mu}} = H^{\tilde{\mu}}_{\nu} x^{\nu}$

The new interpolating basis in the ordinarily interpolating basis

$$x^{\tilde{+}} = \frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}}, x^{\tilde{1}} = x^{\hat{1}}, x^{\tilde{2}} = x^{\hat{2}}, x^{\tilde{-}} = \frac{x_{\hat{-}}}{\sqrt{\mathbb{C}}}$$

Note: In ordinarily Interpolation transformation in IFD, invert the direction of z direction in the IFD

 $(x^{\widehat{}} \rightarrow -x^3).$

: Orthogonal basis set for all interpolation angle

Novel basis

IFD $(\delta \to 0), x^{\tilde{+}} \to x^0, x^{\tilde{1}} \to x^1, x^{\tilde{2}} \to x^2, x^{\tilde{-}} \to x^3$

• Skew coordinate system (all interpolation angle except $\delta \rightarrow 0$)

LFD $(\delta \to \frac{\pi}{4})$, $x^{\hat{+}} \to x^+$, $x_{\hat{-}} \to x^+$ and $\sqrt{\mathbb{C}} \to 0$, therefore $x^{\hat{+}}$ and $x^{\hat{-}}$ become indeterminate unless we consider $x^+ = 0$.

When $\delta \to \pi/4 - \epsilon$ (ϵ is a very small value), The expansion of x^{+} and x^{-} can be written as

$$x_{\delta \to \frac{\pi}{4} - \epsilon}^{\tilde{+}} = \frac{x^+}{\sqrt{2\epsilon}} + \frac{x^-\epsilon}{\sqrt{2}} - \frac{x^+\epsilon^{3/2}}{6\sqrt{2}} \dots$$

$$x_{\delta \to \frac{\pi}{4} - \epsilon}^{\tilde{-}} = \frac{x^+}{\sqrt{2\epsilon}} - \frac{x^-\epsilon}{\sqrt{2}} - \frac{x^+\epsilon^{3/2}}{6\sqrt{2}} \dots$$

This clearly shows that $x^{\tilde{+}}$ and $x^{\tilde{-}}$ reach to same value for very small ϵ values as $\delta \to \pi/4$

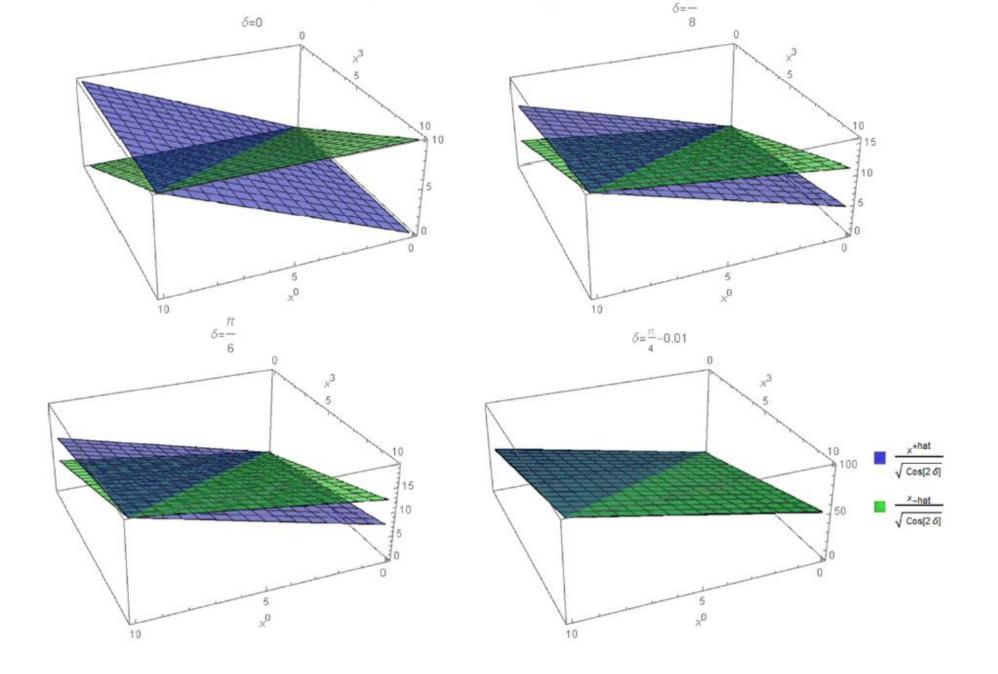


Fig 01: x^{+} and x^{-} vary with x^{0} and x^{3} for different δ values

Space-Time Interval

$$s^{2} = x^{\mu}x_{\mu} = x^{\hat{\mu}}x_{\hat{\mu}} = (x^{\tilde{+}})^{2} - (x^{\tilde{1}})^{2} - (x^{\tilde{2}})^{2} - (x^{\tilde{-}})^{2}$$

Momentum space for the particle mass $M, P^{\mu}P_{\mu}$ on the mass shell is equal to M^2

$$M^{2} = P^{\mu}P_{\mu} = P^{\hat{\mu}}P_{\hat{\mu}} = (P^{\tilde{+}})^{2} - (P^{\tilde{1}})^{2} - (P^{\tilde{2}})^{2} - (P^{\tilde{-}})^{2}$$

Lorentz transformation related to the new interpolating basis can be written as

$$x^{\prime\tilde{\mu}} = H^{\tilde{\mu}}_{\nu}x^{\prime\nu} = H^{\tilde{\mu}}_{\nu}\Lambda^{\nu}_{\alpha}x^{\alpha} = H^{\tilde{\mu}}_{\nu}\Lambda^{\nu}_{\alpha}(H^{-1})^{\alpha}_{\tilde{\nu}}x^{\tilde{\nu}} = \Lambda^{\tilde{\mu}}_{\tilde{\nu}}x^{\tilde{\nu}}$$

After transforming bases using the Lorentz transformation

$$s^2 = x'^{\mu} x'_{\mu} = x'^{\hat{\mu}} x'_{\hat{\mu}} = (x^{\tilde{+}})^2 - (x'^{\tilde{1}})^2 - (x'^{\tilde{2}})^2 - (x'^{\tilde{-}})^2$$

$$M^2 = P'^{\mu}P'_{\mu} = P'^{\hat{\mu}}P'_{\hat{\mu}} = (P'^{\tilde{+}})^2 - (P'^{\tilde{1}})^2 - (P'^{\tilde{2}})^2 - (P'^{\tilde{-}})^2$$

Boost and Rotation operators in 4-vector representation

Poincare Matrix

Interpolating Poincare Matrix

$$M_{\mu\nu} = \begin{pmatrix} 0 & -K^1 & -K^2 & -K^3 \\ K^1 & 0 & J^3 & -J^2 \\ K^2 & -J^3 & 0 & J^1 \\ K^3 & J^2 & -J^1 & 0 \end{pmatrix}$$

 $e^{(-i\beta_z K_3)}$

$$\begin{pmatrix} x'^{\tilde{+}} \\ x'^{\tilde{1}} \\ x'^{\tilde{2}} \\ x'^{\tilde{-}} \end{pmatrix} = \begin{pmatrix} \cosh(\beta_z) & 0 & 0 & \sinh(\beta_z) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh(\beta_z) & 0 & 0 & \cosh(\beta_z) \end{pmatrix} \begin{pmatrix} x^{\tilde{+}} \\ x^{\tilde{1}} \\ x^{\tilde{2}} \\ x^{\tilde{-}} \end{pmatrix}$$

$$\begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} \cosh(\beta_{z}) & 0 & 0 & \sinh(\beta_{z}) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh(\beta_{z}) & 0 & 0 & \cosh(\beta_{z}) \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$$

$$e^{-iJ_{3}\theta_{z}} \begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_{z} & -\sin\theta_{z} & 0 \\ 0 & \sin\theta_{z} & \cos\theta_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$$

$$\begin{pmatrix} x'^{\tilde{+}} \\ x'^{\tilde{1}} \\ x'^{\tilde{2}} \\ x'^{\tilde{-}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_z & -\sin \theta_z & 0 \\ 0 & \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^{\tilde{+}} \\ x^{\tilde{1}} \\ x^{\tilde{2}} \\ x^{\tilde{-}} \end{pmatrix}$$

 $\mathcal{K}^{\hat{1}} = -K^1 \sin \delta - J^2 \cos \delta$

$$e^{i\beta_1 \mathcal{K}^{\hat{1}}}$$

$$\begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} \frac{\cos \delta^{2} - \cos \alpha_{1} \sin \delta^{2}}{\mathbb{C}} & \frac{\sin \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & 0 & \frac{\sin (\alpha_{1}/2)^{2} \mathbb{S}}{\mathbb{C}} \\ \frac{\sin \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & \cos \alpha_{1} & 0 & \frac{\cos \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} \\ 0 & 0 & 1 & 0 \\ -\frac{\sin (\alpha_{1}/2)^{2} \mathbb{S}}{\mathbb{C}} & -\frac{\cos \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & 0 & \frac{\cos \delta^{2} \cos \alpha_{1} - \sin \delta^{2}}{\mathbb{C}} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} \qquad \qquad \begin{pmatrix} x'^{\tilde{+}} \\ x'^{\tilde{1}} \\ x^{2} \\ x^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{1} & 0 & \sin \alpha_{1} \\ 0 & 0 & 1 & 0 \\ 0 & -\sin \alpha_{1} & 0 & \cos \alpha_{1} \end{pmatrix} \begin{pmatrix} x^{\tilde{+}} \\ x^{\tilde{1}} \\ x^{\tilde{2}} \\ x^{\tilde{-}} \end{pmatrix}$$

$$\alpha_1 = \sqrt{\beta_1^2 \cos 2\delta} = \sqrt{\beta_1^2 \mathbb{C}}$$

$$e^{-iJ_{2}\theta_{y}}\begin{pmatrix}x'^{0}\\x'^{1}\\x'^{2}\\x'^{3}\end{pmatrix} = \begin{pmatrix}1 & 0 & 0 & 0\\0 & \cos\theta_{y} & 0 & \sin\theta_{y}\\0 & 0 & 1 & 0\\0 & -\sin\theta_{y} & 0 & \cos\theta_{y}\end{pmatrix}\begin{pmatrix}x^{0}\\x^{1}\\x^{2}\\x^{3}\end{pmatrix}$$

- Similar to the $e^{-i heta_y J^2}$, but here we have $e^{-ilpha_1 J^2}$
- It seems $\mathcal{K}^{\hat{1}}$ play the role of rotation around y axis starting from the IFD to LF vacuum with this new basis
- Kinematic operator $\mathcal{K}^{\hat{1}}$ exclusively independent of interpolation angle in the new basis

$$\mathcal{K}^{\hat{2}} = J^1 \cos \delta - K^2 \sin \delta$$

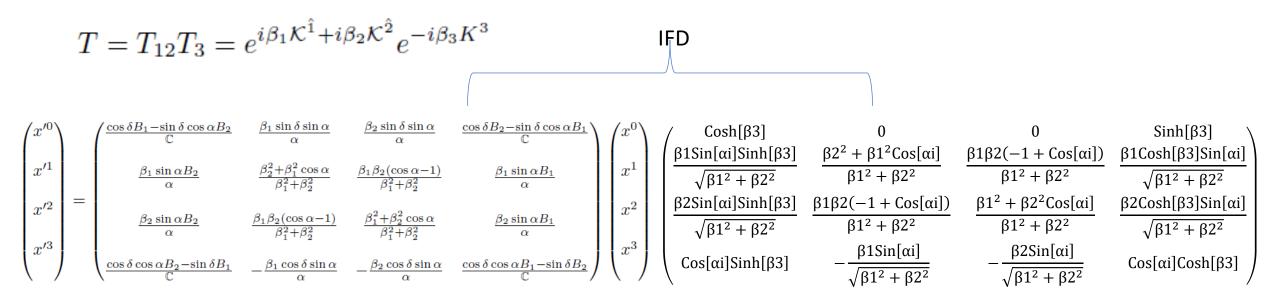
$$e^{i\beta_2 \mathcal{K}^{\hat{2}}}$$

$$\begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} \frac{\cos \delta^{2} - \cos \alpha_{2} \sin \delta^{2}}{\mathbb{C}} & 0 & \frac{\sin \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & \frac{\sin(\alpha_{1}/2)^{2} \mathbb{S}}{\mathbb{C}} \\ 0 & 1 & 0 & 0 \\ \frac{\sin \delta \sin \alpha_{2}}{\sqrt{\mathbb{C}}} & 0 & \cos \alpha_{2} & \frac{\cos \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} \\ -\frac{\sin(\alpha_{2}/2)^{2} \mathbb{S}}{\mathbb{C}} & 0 & -\frac{\cos \delta \sin \alpha_{2}}{\sqrt{\mathbb{C}}} & \frac{\cos \delta^{2} \cos \alpha_{2} - \sin \delta^{2}}{\mathbb{C}} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} \qquad \qquad \begin{pmatrix} x'^{\tilde{+}} \\ x'^{\tilde{1}} \\ x^{2} \\ x'^{\tilde{-}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \alpha_{2} & \sin \alpha_{2} \\ 0 & 0 & -\sin \alpha_{2} & \cos \alpha_{2} \end{pmatrix} \begin{pmatrix} x^{\tilde{+}} \\ x^{\tilde{1}} \\ x^{\tilde{2}} \\ x^{\tilde{-}} \end{pmatrix}$$

- Similar to the $e^{i heta_\chi J^1}$, but here we have $e^{ilpha_2 J^1}$
- It seems \mathcal{K}^2 play the role of rotation around x- axis starting from the IFD to LF vaccume with this new basis
- Kinematic operator *K*² exclusively independent of interpolation angle in the new basis

$$e^{-iJ_1\theta_x}$$

$$\begin{pmatrix} x'^0 \\ x'^1 \\ x'^2 \\ x'^3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \theta_x & -\sin \theta_x \\ 0 & 0 & \sin \theta_x & \cos \theta_x \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}$$



 $\alpha = \sqrt{(\beta_1^2 + \beta_2^2)\mathbb{C}}, \quad B_1 = \sin\delta\sinh\beta_3 + \cos\delta\cosh\beta_3, \quad B_2 = \sin\delta\cosh\beta_3 + \cos\delta\sinh\beta_3$

$$\begin{pmatrix} x'^{\tilde{+}} \\ x'^{\tilde{1}} \\ x'^{\tilde{2}} \\ x'^{\tilde{-}} \end{pmatrix} = \begin{pmatrix} \cosh\beta_3 & 0 & 0 & \sinh\beta_3 \\ \frac{\beta_1 \sin\alpha \sinh\beta_3}{\sqrt{\beta_1^2 + \beta_2^2}} & \frac{\beta_2^2 + \beta_1^2 \cos\alpha}{\beta_1^2 + \beta_2^2} & \frac{\beta_1\beta_2(\cos\alpha - 1)}{\beta_1^2 + \beta_2^2} & \frac{\beta_1 \cosh\beta_3 \sin\alpha}{\sqrt{\beta_1^2 + \beta_2^2}} \\ \frac{\beta_2 \sin\alpha \sinh\beta_3}{\sqrt{\beta_1^2 + \beta_2^2}} & \frac{\beta_1\beta_2(\cos\alpha - 1)}{\beta_1^2 + \beta_2^2} & \frac{\beta_1^2 + \beta_2^2 \cos\alpha}{\sqrt{\beta_1^2 + \beta_2^2}} & \frac{\beta_2 \cosh\beta_3 \sin\alpha}{\sqrt{\beta_1^2 + \beta_2^2}} \\ \cos\alpha \sinh\beta_3 & -\frac{\beta_1 \sin\alpha}{\sqrt{\beta_1^2 + \beta_2^2}} & -\frac{\beta_2 \sin\alpha}{\sqrt{\beta_1^2 + \beta_2^2}} & \cos\alpha \cosh\beta_3 \end{pmatrix} \begin{pmatrix} x^{\tilde{+}} \\ x^{\tilde{-}} \end{pmatrix}$$

Spin Operator

 (x^0, x^1, x^2, x^3)

$$\mathcal{J}_i = T J_i T^{-1}$$

Generalized Helicity operator

$$\mathcal{J}_3 = T J_3 T^2$$

$$\mathcal{J}_3 = T J_3 T^{-1}$$

 $\mathcal{J}_3 = J_3 \cos \alpha + (\beta_1 \mathcal{K}^2 - \beta_2 \mathcal{K}^1) \frac{\sin \alpha}{\alpha}.$

$$\frac{\beta_j}{\alpha} = \frac{P^j}{\sqrt{\mathbf{P}_\perp^2 \mathbf{C}}}$$

 $\sin \alpha = \frac{\sqrt{\mathbf{P}_{\perp}^2 \mathbb{C}}}{\mathbf{P}_{\perp}}$

 $\cos \alpha = \frac{P_{\hat{-}}}{\mathbb{P}}$

$$\alpha = \sqrt{\mathbb{C}(\beta_1^2 + \beta_2^2)}$$

$$\mathcal{J}_{3} = \frac{1}{\mathbb{P}} (P_{\hat{-}}J_{3} + P^{1}\mathcal{K}^{2} - P^{2}\mathcal{K}^{1}),$$

$$\mathbb{P} \equiv \sqrt{(P^{\hat{+}})^{2} - M^{2}\mathbb{C}} = \sqrt{P_{\hat{-}}^{2} + \mathbf{P}_{\perp}^{2}\mathbb{C}}.$$

$$(1) \quad 1\hat{\mathcal{L}}^{2} = 1\hat{\mathcal{L}}^{2}$$

$$(\delta \to 0), \quad \mathcal{K}^{\hat{1}} \to -J^2, \quad \mathcal{K}^{\hat{2}} \to J^1, \quad P_{\hat{-}} \to P^3 \quad \mathbb{P} \to \sqrt{(P^0)^2 - M^2} = |\mathbf{P}| \qquad \mathcal{J}_3 = |\mathbf{P} \cdot \mathbf{J}/|\mathbf{P}|$$

Jackob-Wick Helicity

 $(\delta \to \pi/4), \mathcal{K}^{\hat{1}} \to -E_1, \mathcal{K}^{\hat{2}} \to -E_2, P_{\hat{-}} \to P^+ \mathbb{P} \to \sqrt{(P^+)^2} = P^+$

Light-front helicity

 $\mathcal{J}_3 = J_3 + \frac{1}{P^+} (P^2 E_1 - P^1 E_2)$

Generalized Helicity operator

$$\begin{split} \frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}}, x^{\hat{1}}, x^{\hat{2}}, \frac{x_{\hat{-}}}{\sqrt{\mathbb{C}}} &= (x^{\tilde{+}}, x^{\tilde{1}}, x^{\tilde{2}}, x^{\tilde{-}}) \\ \mathcal{J}_{3} &= TJ_{3}T^{-1} \end{split}$$

$$\begin{aligned} \mathcal{J}_3 &= J_3 \cos \alpha + (\beta_1 J_1 + \beta_2 J_2) \frac{\sin \alpha}{\sqrt{\beta_1^2 + \beta_2^2}} \\ \mathcal{J}_3 &= \frac{\sqrt{\mathbb{C}}}{\mathbb{P}} \Big(P^1 J_1 + P^2 J_2 + \frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}} J_3 \Big) \longrightarrow \qquad \mathcal{J}_3 = \frac{1}{\sqrt{P_{\perp}^2 + \frac{P_{\hat{-}}^2}{\mathbb{C}}}} \Big(P^1 J_1 + P^2 J_2 + \frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}} J_3 \Big) \end{aligned}$$

$$\begin{aligned} \text{Magnitude of the total momentum in the new basis} \qquad \boxed{\tilde{P}} \end{aligned}$$

$$\mathcal{J}_3 = rac{ ilde{P}.J}{| ilde{P}|}$$

This valid for any interpolation angle in the basis, It seems the structure is invariant throughout

$$\mathcal{J}_3 = \frac{\sqrt{\mathbb{C}}}{\mathbb{P}} \left(P^1 J_1 + P^2 J_2 + \frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}} J_3 \right) \qquad \qquad \mathcal{J}_3 = \frac{\tilde{P}_{\cdot,J}}{|\tilde{P}|}$$

LF-zero-mode

 $\sqrt{\mathbb{C}} \to 0$ and $P^+ \to 0$

 $\mathcal{J}_3 = J_3 + a \left(P^1 J_1 + P^2 J_2 \right)$

a = finite value

 $(\delta \to 0)$ $P_{\hat{-}} \to P^3 \quad \mathbb{P} \to |\mathbf{P}|$ $\mathcal{J}_3 = \frac{\mathbf{P} \cdot \mathbf{J}}{|\mathbf{P}|}$

Jackob-Wick Helicity

$$\mathcal{J}_3 = J_3$$

 $(\delta \rightarrow \pi/4)$

 $P_{\hat{-}} \rightarrow P^+ \quad \mathbb{P} \rightarrow \sqrt{(P^+)^2} = P^+$

Poincare Algebra in the new basis (45 commutation relations)

	$\frac{P^{\downarrow}}{\sqrt{\mathbb{C}}}$	$P^{\hat{1}}$	$P^{\hat{2}}$	$\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}$	$\mathcal{D}^{\hat{1}}$	$\mathcal{D}^{\hat{2}}$	J^3	$\mathcal{K}^{\hat{1}}$	$\mathcal{K}^{\hat{1}}$	K^3
$\frac{P^{\ddot{+}}}{\sqrt{\mathbb{C}}}$	0	0	0	0	$\frac{iP^{\hat{1}}}{\sqrt{\mathbb{C}}}$	$\frac{iP^2}{\sqrt{C}}$	0	0	0	$\frac{iP_{-}}{\sqrt{\mathbb{C}}}$
$P^{\hat{1}}$	0	0	0	0	$\frac{-iP^{\tilde{+}}}{\mathbb{C}} + \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}$	0	$-iP^{2}$	$-iP_{\hat{-}}$	0	0
$P^{\hat{2}}$	0	0	0	0	0	$\frac{-iP^{\downarrow}}{\mathbb{C}} + \frac{i\mathbb{S}P_{-}}{\mathbb{C}}$	$iP^{\hat{1}}$	0	$-iP_{\hat{-}}$	0
$\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}$	0	0	0	0	$\frac{-i\mathbb{S}P^{\hat{1}}}{\sqrt{\mathbb{C}}}$	$\frac{-i\mathbb{S}P^2}{\sqrt{\mathbb{C}}}$	0	$i\sqrt{\mathbb{C}}P^{\hat{1}}$	$i\sqrt{\mathbb{C}}P^{\hat{2}}$	$\frac{iP^{\tilde{+}}}{\sqrt{\mathbb{C}}}$
$\mathcal{D}^{\hat{1}}$	$-\frac{iP^{1}}{\sqrt{\mathbb{C}}}$	$\frac{iP^{\hat{+}}}{\mathbb{C}} - \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}$	0	$\frac{i \mathbb{S}P^1}{\sqrt{\mathbb{C}}}$	0	$-i\mathbb{C}J^3$	$-i\mathcal{D}^{2}$	$-iK^3$	$-i\mathbb{S}J^3$	$-i\mathbb{S}\mathcal{D}^{\hat{1}}+i\mathbb{C}\mathcal{K}^{\hat{1}}$
$\mathcal{D}^{\hat{2}}$	$-\frac{iP^2}{\sqrt{\mathbb{C}}}$	0	$\frac{iP^{\tilde{+}}}{\mathbb{C}} - \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}$	$\frac{i \mathbb{S}P^2}{\sqrt{\mathbb{C}}}$	$i\mathbb{C}J^3$	0	$i\mathcal{D}^{\hat{1}}$	$i \mathbb{S}J^3$	$-iK^3$	$-i\mathbb{S}\mathcal{D}^{\hat{2}}+i\mathbb{C}\mathcal{K}^{\hat{2}}$
J^3	0	$iP^{\hat{2}}$	$-iP^{\hat{1}}$	0	$i {\cal D}^{\hat 2}$	$-i\mathcal{D}^{\hat{1}}$	0	$i \mathcal{K}^{\hat{2}}$	$-i\mathcal{K}^{\hat{1}}$	0
$\mathcal{K}^{\hat{1}}$	0	$iP_{\hat{-}}$	0	$-i\sqrt{\mathbb{C}}P^{\hat{1}}$	iK^3	$-i\mathbb{S}J^3$	$-i\mathcal{K}^{\hat{2}}$	0	$i\mathbb{C}J^3$	$i\mathbb{S}\mathcal{K}^{\hat{1}} + i\mathbb{C}\mathcal{D}^{\hat{1}}$
\mathcal{K}^2	0	0	$iP_{\hat{-}}$	$-i\sqrt{\mathbb{C}}P^2$	$i \mathbb{S}J^3$	iK^3	$i\mathcal{K}^{\hat{1}}$	$-i\mathbb{C}J^3$	0	$i\mathbb{S}\mathcal{K}^2 + i\mathbb{C}\mathcal{D}^2$
K^3	$\frac{-iP_{\hat{-}}}{\sqrt{\mathbb{C}}}$	0	0	$\frac{-iP^{\hat{+}}}{\sqrt{\mathbb{C}}}$	$\mathbb{S}\mathcal{D}^{\hat{1}} + i\mathbb{C}\mathcal{K}^{\hat{1}}$	$i\mathbb{S}\mathcal{D}^{\hat{2}}-i\mathbb{C}\mathcal{K}^{\hat{2}}$	0	$-i\mathbb{S}\mathcal{K}^{\hat{1}}-i\mathbb{C}\mathcal{D}^{\hat{1}}$	$-i\mathbb{S}\mathcal{K}^{\hat{2}}-i\mathbb{C}\mathcal{D}^{\hat{2}}$	0

All the commutation relation has been calculated previously, are considered ordinarily covariant and contravariant form.

$$\left[\frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}}, K^{\hat{3}}\right] = i \frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}} \qquad \qquad \left[\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}, K^{\hat{3}}\right] = i \frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}}$$

 $\delta \to 0, \ [P^0, K^3] = iP^3 \qquad [P^3, K^3] = iP^0$

 $\delta \rightarrow \frac{\pi}{4}$, $P^+ \rightarrow 0$, Kinematic behavior of the longitudinal boost

$$\Big[\frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}},J^{\hat{3}}\Big] = 0 \qquad \Big[\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}},J^{\hat{3}}\Big] = 0$$

 J^3 is kinematic operator for all interpolation angle

$$\left[\frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}}, \mathcal{K}^{\hat{1}}\right] = 0 \qquad \qquad \left[\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}, \mathcal{K}^{\hat{1}}\right] = i\sqrt{\mathbb{C}}P^{\hat{1}}$$

$$\left[\frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}},\mathcal{K}^{\hat{2}}\right] = 0 \qquad \qquad \left[\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}},\mathcal{K}^{\hat{2}}\right] = i\sqrt{\mathbb{C}}P^{\hat{2}}$$

$$\left[\frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}}, \mathcal{D}^{\hat{1}}\right] = -i\frac{P^{\hat{1}}}{\sqrt{\mathbb{C}}} \qquad \left[\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}, \mathcal{D}^{\hat{1}}\right] = -i\frac{P^{\hat{1}}\mathbb{S}}{\sqrt{\mathbb{C}}}$$

$$\left[\frac{P^{\hat{+}}}{\sqrt{\mathbb{C}}}, \mathcal{D}^{\hat{2}}\right] = -i\frac{P^{\hat{2}}}{\sqrt{\mathbb{C}}} \qquad \left[\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}, \mathcal{D}^{\hat{2}}\right] = -i\frac{P^{\hat{2}}\mathbb{S}}{\sqrt{\mathbb{C}}}$$

$$\delta \to 0, \ [P^0, K^1] = iP^1 \qquad [P^3, K^1] = 0$$

 $[P^0, K^2] = iP^2 \qquad [P^3, K^2] = 0$

$$\mathcal{K}^{\hat{1}} \quad \mathcal{K}^{\hat{2}}$$
 Kinematic operators in all range of interpolation angle

$$\delta \rightarrow \frac{\pi}{4}, P^+ \rightarrow 0,$$

Infinite longitudinal momentum -> negligible P^1 and P^2

Commutation relations still give finite values

Poincare Generators in spinor representation

1704 H. BACRY and J. NUYTS

rotations	$M^{ij} = rac{1}{2} \epsilon^{ijk} egin{pmatrix} \sigma^k & 0 \ \dots & 0 \ 0 & \sigma^k \end{pmatrix}$,
pure Lorentz transformations	$M^{0k} = \frac{1}{2} \left(\begin{array}{ccc} i\sigma^k & 0 \\ \cdots & 0 \\ 0 & -i\sigma^k \end{array} \right),$
translations	$P^{\mu}=rac{1}{2} \left(egin{array}{c c} 0 & 0 \ \cdots & \cdots$

where $\sigma^{\mu} = (1, \sigma)$ are the 2×2 unit matrix and the usual Pauli matrices.

$$\begin{split} [\, M^{\mu\nu}, \ M^{\varrho\lambda}] &= i (g^{\nu\varrho} \, M^{\mu\lambda} - g^{\nu\lambda} \, M^{\mu\varrho} - g^{\mu\varrho} \, M^{\nu\lambda} + g^{\mu\lambda} \, M^{\nu\varrho}) \,, \\ [\, M^{\mu\nu}, \ P^{\varrho}] &= i (g^{\nu\varrho} \, P^{\mu} - g^{\mu\varrho} \, P^{\nu}) \,, \\ [\, P^{\mu}, \ P^{\nu}] &= 0 \,, \end{split}$$

Approach-1

• Time translation

$$t' = t + a_t \qquad z' = z$$
Commutation
$$\begin{pmatrix} t' \\ z' \end{pmatrix} = \begin{bmatrix} 1 + \frac{a_t}{t} & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} t \\ z \end{pmatrix} \qquad I + \frac{a_t}{t} \begin{pmatrix} I + \sigma_3 \\ 2 \end{pmatrix} \qquad H = \begin{pmatrix} I + \sigma_3 \\ 2 \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$[H, P^3] = 0$$

• Space translation in z-direction

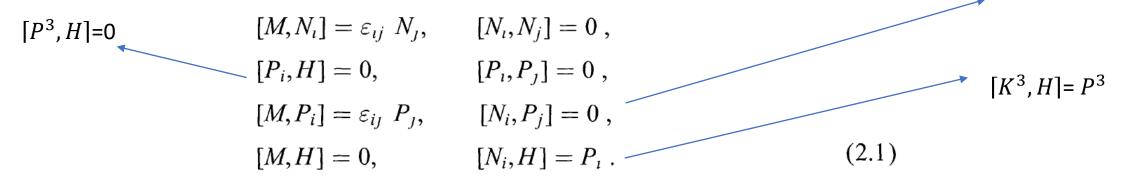
$$t' = t \qquad z' = z + a_z \qquad [H, K^3] = -K^3$$
$$\begin{pmatrix} t' \\ z' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 + \frac{a_z}{z} \end{bmatrix} \begin{pmatrix} t \\ z \end{pmatrix} \qquad I + \frac{a_z}{z} \begin{pmatrix} I - \sigma_3 \\ 2 \end{pmatrix} \qquad P^3 = \begin{pmatrix} I - \sigma_3 \\ 2 \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad [P^3, K^3] = K^3$$

• Boost in z-direction

 $t' = t \qquad z' = vt + z$ $\begin{pmatrix} t' \\ z' \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ v & 1 \end{bmatrix} \begin{pmatrix} t \\ z \end{pmatrix} \qquad I + v \begin{pmatrix} \sigma_1 - i\sigma_2 \\ 2 \end{pmatrix} \qquad K^3 = \begin{pmatrix} \sigma_1 - i\sigma_2 \\ 2 \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

2. The Lie Algebra of the 2 + 1 Dimensional Galilean Group and its Central Extension

Let G denote the Galilean group in (2 + 1) space-times and Lie(G) its Lie algebra. We choose a basis for Lie(G) in which the infinitesimal generators of rotation, the boosts along the two spatial directions, that of time translation and those of spatial translation are denoted respectively as M, N_i, H and P_i (i = 1, 2). The commutation relations for these operators are $[K^3, P^3]=0$



In the above, ε_{ij} is the antisymmetric symbol with $\varepsilon_{12} = -\varepsilon_{21} = 1$. Summation convention for a repeated index is implied. The physical significance of the generators are well-known. *M* corresponds to the angular momentum in the plane, *H* the Hamiltonian and P_i the components of linear momentum.

The Galilean Group in 2 + 1 Space-Times and its Central Extension

Commun. Math. Phys. 169, 385 – 395 (1995)

2. Dynamical realization of the *l*-conformal Galilei algebra

The *l*-conformal Galilei algebra includes the generators of time translations, dilatations, special conformal transformations, spatial rotations, spatial translations, Galilei boosts and accelerations. Denoting the generators by $(H, D, K, M_{ij}, C_i^{(n)})$, respectively, where i = 1, ..., d is a spatial index and n = 0, 1, ..., 2l, one has the structure relations [3]

$$[H, D] = iH, \qquad [H, C_i^{(n)}] = inC_i^{(n-1)}, \qquad [H, K^3] = iP^3$$

$$[H, K] = 2iD, \qquad [D, K] = iK,
$$[D, C_i^{(n)}] = i(n-l)C_i^{(n)}, \qquad [K, C_i^{(n)}] = i(n-2l)C_i^{(n+1)},
[M_{ij}, C_k^{(n)}] = -i(\delta_{ik}C_j^{(n)} - \delta_{jk}C_i^{(n)}),
[M_{ij}, M_{kl}] = -i(\delta_{ik}M_{jl} + \delta_{jl}M_{ik} - \delta_{il}M_{jk} - \delta_{jk}M_{il}). \qquad (1)$$$$

Note that (H, D, K) form so(2, 1) subalgebra, which is the conformal algebra in one dimension. The instances of n = 0 and n = 1 in $C_i^{(n)}$ correspond to the spatial translations and Galilei boosts. Higher values of n are linked to the accelerations.

> Dynamical realization of *l*-conformal Galilei algebra and oscillators Nuclear Physics B 866 (2013) 212–227

 $[H, P^3]=0$

Approach-02

To include translation operator in the four-vector representation, we have to increase one dimension .

• Satisfy usual Poincare algebra

Translation operator

$$\mathbf{P}=e^{-i\,a^{\mu}P\mu}=e^{-i\,g_{\mu\nu}a^{\mu}P^{\nu}}$$

 $e^{-i a^0 P^0}$

P^0 Operator in the {x0,x1,x2,x3} basis

$$\begin{pmatrix} 1\\x^{0}+a0\\x^{1}\\x^{2}\\x^{3} \end{pmatrix} = \begin{pmatrix} 1&0&0&0&0\\a0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1 \end{pmatrix} \begin{pmatrix} 1\\x^{0}\\x^{1}\\x^{2}\\x^{3} \end{pmatrix}$$

 P^2 Operator in the {x0,x1,x2,x3} basis

$$\begin{pmatrix} 1\\ x^{0}\\ x^{1}\\ x^{2}+a2\\ x^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ a2 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ x^{0}\\ x^{1}\\ x^{2}\\ x^{3} \end{pmatrix}$$

 $e^{i \, a^1 P^1}$

*P*¹ Operator in the {x0,x1,x2,x3} basis

$$\begin{pmatrix} 1\\x^{0}\\x^{1}+a1\\x^{2}\\x^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0\\a1 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\x^{0}\\x^{1}\\x^{2}\\x^{3} \end{pmatrix}$$

e^{i a³P¹}

 P^3 Operator in the {x0,x1,x2,x3} basis

$$\begin{pmatrix} 1\\ x^{0}\\ x^{1}\\ x^{2}\\ x^{3}+a3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ a3 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ x^{0}\\ x^{1}\\ x^{2}\\ x^{3} \end{pmatrix}$$

III. CONTRACTION OF LORENTZ GROUPS

Let us consider, first, the inhomogeneous Lorentz group with one spacelike, one time-like dimension. It is given by the transformations

$$\begin{aligned} x' &= x \cosh \lambda + t \sinh \lambda + a_x \\ t' &= x \sinh \lambda + t \cosh \lambda + a_t. \end{aligned} \tag{26}$$

$\cosh \lambda$	$\sinh \lambda$	a_x
$\sinh \lambda$	$\cosh \lambda$	a_t
0	0	$1 \parallel$

form a natural, though not unitary, representation of the group of transformations (26). We can carry out the contraction by setting $a_t = b_t$, $\lambda = \epsilon v$, $a_x = \epsilon b_x$ or $\lambda = v/c$, $a_x = b_x/c$ and letting ϵ converge to 0, or *c* converge to infinity. If we do this directly in (26a), the representation will not remain faithful for the contracted group. We shall transform therefore (26a) with a suitable ϵ (or *c*) dependent matrix: multiply the first row with *c*, the first column with 1/c. If *c* goes to infinity in the matrix obtained in this way, one obtains the transformations of the contracted group

$$\begin{aligned}
x' &= x + vt + b_x \\
t' &= t + b_t.
\end{aligned}$$
(27a)

Inönü, E.; Wigner, E.P. On the Contraction of Groups and their Representations. *Proc. Natl. Acad. Sci.* (U.S.) 1953, 39, 510–524.

2 Two-dimensional Euclidean Grouip and Cylindrical group

The two-dimensional Euclidean group, often called E(2), consists of rotations and translations on a two-dimensional Euclidian plane. The coordinate transformation takes the form

$$x' = x \cos \alpha - y \sin \alpha + u, \qquad y' = x \sin \alpha + y \cos \alpha + v. \tag{1}$$

This transformation can be written in matrix form as

$$\begin{pmatrix} u'\\y'\\1 \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha & u\\\sin\alpha & \cos\alpha & v\\0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u\\y\\1 \end{pmatrix}$$
(2)

The three-by-three matrix in the above expression can be exponentiated as

$$E(u, v, \alpha) = \exp\left(-i(uP_1 + vP_2)\right)\exp\left(-i\alpha L_3\right),\tag{3}$$

where L_3 is the generator of rotations, and P_1 and P_2 generate translations. These generators take the form

$$L_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P_1 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & 0 & 0 \end{pmatrix}, \tag{4}$$

and satisfy the commutation relations:

$$[P_1, P_2] = 0, \qquad [L_3, P_1] = iP_2, \qquad [L_3, P_2] = -iP_1, \tag{5}$$

which form the Lie algebra for E(2).

Kim, Y. S.; Wigner, E.P. Cylindrical group and massless particles. J. Math. Phys. 1987, 28, 1175–1179.

4. Contraction of SO(3, 2) to ISO(3, 1)

Let us next go back to the SO(3,2) contents of this two-oscillator system [4]. There are three space-like coordinates (x, y, z) and two time-like coordinates s and t. It is thus possible to construct the five-dimensional space of (x, y, z, t, s), and to consider four-dimensional Minkowskian subspaces consisting of (x, y, z, t) and (x, y, z, s).

As for the *s* variable, we can make it longer or shorter, according to procedure of group contractions introduced first by Inönü and Wigner [17]. In this five-dimensional space, the boosts along the *x* direction with respect to the *t* and *s* variables are generated by

Poincaré Symmetry from Heisenberg's Uncertainty Relations Let us then introduce the five-by-five contraction matrix [18,19]

$$C(\epsilon) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \epsilon \end{pmatrix}.$$
 (29)

This matrix leaves the first four columns and rows invariant, and the four-dimensional Minkowskian sub-space of (x, y, z, t) stays invariant.

As for the boost with respect to the *s* variable, according to the procedure spelled out in Refs. [18,19], the contracted boost generator becomes

Likewise, B_y^c and B_z^c become

respectively.

As for the t direction, the transformation applicable to the s and t variables is a rotation, generated by

This matrix also becomes contracted to

These four contracted generators lead to the five-by-five transformation matrix

$$\exp\left\{-i\left(aB_{x}^{c}+bB_{y}^{c}+cB_{z}^{c}+dB_{t}^{c}\right)\right\}=\begin{pmatrix}1&0&0&0&a\\0&1&0&0&b\\0&0&1&0&c\\0&0&0&1&d\\0&0&0&0&1\end{pmatrix},$$
(34)

performing translations:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & a \\ 0 & 1 & 0 & 0 & b \\ 0 & 0 & 1 & 0 & c \\ 0 & 0 & 0 & 1 & d \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ 1 \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ z+c \\ t+d \\ 1 \end{pmatrix}.$$
(35)

This matrix leaves the first four rows and columns invariant. They are for the Lorentz transformation applicable to the Minkowskian space of (x, y, z, t).

Conclusion

- Kinematic Poincare generators in the basis of scaled interpolating variables produce similar matrix structures of them in the Euclidean basis.
- The kinematic operators $\mathcal{K}^{\hat{1}}$, $\mathcal{K}^{\hat{2}}$ plays the role of rotation around y and x-axes in the new basis for all interpolation angle
- Translation operator matrix structure is more non-trivial in the Four vector representation

Future work

- Try to find the four-vector representation of the translation operators in the four dimensions.
- Understanding the extra dimension in the (5x5) matrix in the four-vector representation of translation operators

Thank you