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Simple Topological Soliton - ‘The Kink’ 1

1David Tong. TASI lectures on solitons: Instantons, monopoles, vortices and kinks. 2005.
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Classical Solitons

1. Solitons are the solutions of classical field equations. Precisely, they are the
solutions of the finite energy configuration.

2. Topological solitons is a solution of a system of partial differential equations
(or) of quantum field theory homotopically distinct from the vacuum solution2.

3. Two continuous function from one topological space is homo-topically distinct,
if one can be continuously deformed into each other. The deformation is defined
as homotopy.

4. The simplest topological solitons are namely, the Kink solitons and the Sine
gordan soliton.

2N. S. Manton and P. Sutcliffe, “Topological solitons,”, Cambridge University Press.
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Kink Soliton - An overview
The simple topological soliton is the kink soliton which occurs in 1+1 dimensional
space time.

L = 1
2∂µϕ∂

µϕ− U(ϕ) (1)

U(ϕ) = −µ2

2 ϕ2 + λ

4ϕ
4 + µ2

4λ
which can be simplified as,

U(ϕ) = λ

4 (ϕ2 − a2)2 (2)

where, a = µ√
λ

. The minima of the potential occurs when dU
dϕ

= 0.

Figure: Mexican hat potential
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Classical Vacua and Domain walls

▶ The classical vacua occurs at the minima of the potential. Thus the classical
vacua solution occurs at ϕ = ±a.

▶ ϕ is continous and between two vacua there should be a transition region. This
is called Domain wall.

▶ This domain wall is theoretically the spontaneous breaking of discrete
symmetry.

▶ The simplest soliton namely the kink soliton has the form,

ϕ = atanh
µ√
2
x

.
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Derricks Theorem and its consequence

Derrick’s theorem3 is an argument due to the physicist G.H.Derrick which shows that
stationary localised solutions to the non linear wave equation or non linear klein
gordan equation in spatial dimensions three and higher are unstable. Derricks
theorem which was considered an obstacle to interpreting soliton-like solutions as
particles, contained the following physical argument about non-existence of stable
localized stationary solutions to the nonlinear wave equation. We look for solutions
which :
▶ Localised
▶ Finite energy configuration
▶ Static (Time independent)

3V. Robokov, Classical theory of gauge fields, Princeton University Press
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Energy of Kink soliton

Calculating the Hamiltonian density,

H = 1
2(∂xϕ)2 + U(ϕ) (3)

The Energy can be given by,

E =
∫ ∞

−∞
dxH (4)

E =
∫ ∞

−∞
dx

[
1
2(∂xϕ)2 + λ

4 (ϕ2 − a2)2
]

(5)

By substituting the known values we get, (briefly discussed in 1+1 Instantons).

E = µ2

4λ ∗ λ3 ∗ 16a2 (6)

E = 4
3µa

2 < ∞ (7)

This gives the finite energy solution.
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Action of Symmetries

Parity:
Under parity transformation ϕ → −ϕ, as x → −x.
Thus, for kink soliton transforms as , ϕ = −atanh µ√

2x. The parity transformed kink
soliton is called as the Anti-kink soliton.
Time Translation:
Since the kink soliton is invariant in the time translation as they are independent of
the time co-ordinates. The kink soliton remains invariant under time translation.
Spatial transformation:
Under the spatial transformation, x → x− α the kink soliton transforms as,
ϕ = atanh µ√

2 (x− α). The spatial transformation doesnot leave the kink to be
invariant, but changes the origin of the kink soliton.
Lorentz Symmetry:
The lorentz transformation is as follows,

x = γ(x′ − ut′)

t = γ(t′ − ux′)

The kink under the lorentz transformation leaves the solution to satisfy the equations
of motion which can be described as follows, ϕ = atanh µ√

2γ(x′ − ut′)
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Anti-Kink soliton

Figure: Kink and Anti-Kink soliton
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Magnetic Vortices
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Magnetic Vortices - A glimpse

▶ The solitons of curly type are called the vortices. Vortices can occur at field
theory with spontaneously broken continuous symmetry.

▶ Topological vortices in the 2 + 1 dimensions are called vortices and in 3 + 1
dimensions are called flux tubes (or) strings.

▶ During the transformation of vortices in 2 + 1 to 3 + 1 the solutions donot
change because in 3 + 1 the flux tube is observed projecting out in the third
coordinate.
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Abrikosov-Nielson-Oleson Vortex 4

Consider a system in the Abelian Higgs model, (2 + 1),

L = −1
4e2FµνF

µν +DµϕDµϕ− U(ϕ) (8)

Fµν = ∂µAν − ∂νAν

Dµϕ = (∂µ − iqAµ)ϕ
U(ϕ) = λ

2 (ϕ2 − a2)2 where a = µ√
λ

The model is abelian, So it is invariant under the U(1) Gauge transormation.

ϕ → eiβ(x)ϕ

Aµ → Aµ + 1
q
∂µβ

Here we consider the pure gauge situation, So, Aµ = 0.ϕ = a corresponds to the
classical vacua. The Higgs mechanism of the vector field acquires a mass,

mv =
√

2eqa (9)

The real field which is the Higgs field has the mass such that,

mH = 2
√
λa (10)

4H.B. Nielsen and P. Otesen, Niels Bohr Institute preprint, Copenhagen,(May 1973)
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Energy of ABO vortices 5

We find the vortices when r → ∞. The energy should be Time independent and
Finite.

H = 1
4e2FµνF

µν +
[
Dµϕ]2 + U(ϕ) (11)

Since it is time independent the time derivatives vanish. Thus,

E =
∫
d2xH (12)

E =
∫
d2x

[
1

4e2FijF
ij + [Diϕ]2 + U(ϕ)

]
< ∞ (13)

We find the vortices when r → ∞. The energy should be Time independent and
Finite.

H = 1
4e2FµνF

µν +
[
Dµϕ]2 + U(ϕ) (14)

Since it is time independent the time derivatives vanish. Thus,

E =
∫
d2xH (15)

E =
∫
d2x

[
1

4e2FijF
ij + [Diϕ]2 + U(ϕ)

]
< ∞ (16)

5B. Zumino, Lectures given at the 1973 Nato Summer Institute in Capri, CERN preprint TH. 1779 (1973)
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Bogomolnyi’s trick 6

By the process of completing the squares,

E ∓ 1
2

∫
(a3F12)dx1dx2 ⩾ 0 (17)

By simplifying further we get,

E ∓ a3 2nπ
e

⩾ 0 (18)

Thus when n > 0 we have E ⩾ 2nπa3

e

When n < 0 we have E ⩾ −2nπa3

e

Equating the similar terms of first order to 0, we get the first order BPS solution,

Dz̄ϕ = ∂z̄ϕ− ieAz̄ϕ = 0 (19)

and

F12 = −e
2

[
ϕ2 − a2

]
(20)

This condition can be termed as the Saturation of bounds.

6E.B. Bogomol’nyi. Sov. J. Nucl. Phys. 24, 449 (1976).
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Number of Vortices- A mathematical prelude 7

1. Let X, Y be two topological spaces. Suppose f : X → Y is a mapping which is
continuous, if it takes a neighbourhood of X with that of Y.

2. If f : X → Y and g : X → Y are said to homotopic if one can be continuously
deformed to the other. A mapping f : X → Y is said to be homotopic to zero,
if it is homotopic to a mapping taking the whole space X to a single point of Y.

3. If Y is connected then all such mappings are homotopic to each other and the
equivalence class is called the zero homotopy class.

4. Fundamental group: Let us consider the mapping of S1 to X„ where X is some
topological space. Let f : X → Y is a mapping in the interval [0, 1] such that,

f(0) = f(1) = c, say

. The set of homotopy mapping from S1 to X in that interval is denoted by
Π1(X, c).

7R. Piccinni, Lectures of Homotopy theory, Springer
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Homotopy groups

Let f and g be two mappings from S1 to X such that,

f(0) = f(1) = c

g(0) = g(1) = c

in the interval [0, 1]. Then f ∗ g is defined as the path that first runs along g and then
along f. f ∗ g satisfies all the properties of the group and Π1(X, c) is called as the
fundamental group. A fundmental group is the simplest group which can generate
other elements of that group. For S1 → X , where X = S1, then

Π1(S1) = Z

where, Z is the set of all integers. The group Π1(S1) is isomorphic to the set of all
integers under addition.
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Some results from the Homotopy groups 8

▶ If f : Sn → Sm; forn < m then ,

πn(Sm) = 0

This mapping is called the trivial map. Because it has only the zero element.
▶ The homotopy group of πn(Sn) is isomorphic to all the group of all integers

under addition Z .
▶ The degree of mapping is called the topological number.
▶ The degree of mapping is given by the winding number. The number of times

the function goes around the given function.
▶ In the 3 dimensional space, πn(M) is trivial which arises by a consquence of

Poincar’e Conjecture.
▶ For, πn(S1) = πn(S2) = πn(S3) = Z , which is the set of integers under

addition.

8R. Piccinni, Lectures of Homotopy theory, Springer
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Number of Vortices 9

Let us take a system in the 2 + 1 dimension, which possess the U(1) symmetry. The
lagrangian of that system is,

L = 1
2∂µϕ∂

µϕ− U(ϕ) (21)

The vacuum solution occurs when ϕ = ±a.ϕ travels along the contour in the given
interval. This on co-ordinate transformation to the polar coordinates would result in ,

ϕ(r, α) = aeinα (22)

where, α is the polar angle and n is a integer. This leads us to the application of the
topological formula for first homotopy group.

π1(U1) = Z (23)

Here,Z is vortex number, (i.e)., Number of counts around the vacuum manifold
circle.

9R. Rajaraman. An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam:
North- Holland, 1982.
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Vortices in Superconductivity 10

1. The vortex in Abelian Higgs model is similar to the Abrikosov vortices in the
Landau-Ginzberg model of superconductivity.

2. An Abrikosov vortex (also called a fluxon) is a vortex of supercurrent in a
type-II superconductor. Abrikosov vortices can be explicitly demonstrated as
solutions to that theory in a general mathematical setting, viz. as vortices in
complex line bundles on Riemannian manifolds.

3. Landau–Ginzburg theory is a mathematical physical theory used to describe
superconductivity. It was postulated as a phenomenological model which could
describe type-I superconductors without examining their microscopic
properties. It further extends to quantum field theory and string theory because
they are closely resembled.

10R. Rajaraman. An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam:
North- Holland, 1982.

20 / 40



The Vortices

Figure: Abrikosov Vortices
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Monopoles
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Monopoles

▶ The magnetically charged solutions are much of interest inorder to study the
grand unified theories by unifying the Weak, strong and electromagnetic
interactions.

▶ The initial approach of monopoles were given by Dirac, t’Hooft and Polyakov.
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Dirac’s Monopole 11

By Maxwell’s equation there is no source free magnetic charges unlike electric
charges. If there is a magnetic charges then , ∇.B is not equal to zero.

B = ∇ ×A

is false if magnetic charges exist. Also, if electric charges are present ∇.E = 4πρe

where,
ρe = eδ3(x) (24)

E⃗ = e

r2 êr (25)

Dirac in 1931, found the effect of a presence of magnetic pole at origin. So assuming
the presence of magnetic charge we have ,

B⃗ = g

r2 êr (26)

such that,
∇.B = 4πgδ3(x) (27)

11P.A.M. Dirac, Proc. Roy. Soc. A133 (1934) 60; Phys. Rev. 74 (1948) 817
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Dirac’s Monopole - An illustration 12

At origin of R∋, ∇.B = 0 where A exists everywhere apart from origin. But this
cannot be true. By Gauss law, ∮

S3
R

E.dS = 4πe (28)

Similarly, ∮
S3

R

B.dS = 4πg (29)

Illustration:
Let’s assume, A⃗s = −qy

r(r+z) êx + gx
r(r+z) êy

A⃗s is defined except at r = 0 and r = −z. Therefore,

∇⃗.A⃗s = B⃗m (30)

To make Gauss law work, we need to have a flux tube of zero thickness along ’-z
axis’. This is termed as Dirac String. Consider a free electron in a time independent
magnetic field,

H = (p− eA)2

2m (31)

Hψ = Eψ (32)
12P.A.M. Dirac, Proc. Roy. Soc. A133 (1934) 60; Phys. Rev. 74 (1948) 817
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Illustration continued 13

ψ(x) = exp

[
ie

h

∫ x

x0

d⃗l.A⃗

]
˜ψ(˜)x

Substituting the value of ψ in the previous equation we get,

(p− eA)ψ = exp

[
iΦ

]
Pψ (33)

where, exp

[
iΦ

]
is the phase. In Quantum mechanics, phase is not an observable but

the difference of phase is an observable. Also, phase is path dependent.

∆Φ = Φ(r1) − Φ(r2) (34)

Therefore,
∆Φ = e

h̄
Φm (35)

where, Φm is the flux through the surface. This can be termed as Ahronkov Bohm
effect.

13P.A.M. Dirac, Proc. Roy. Soc. A133 (1934) 60; Phys. Rev. 74 (1948) 817
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Ahronkov Bohm effect

1. The Aharonov–Bohm effect is a quantum mechanical phenomenon in which an
electrically charged particle is affected by an electromagnetic potential, despite
being confined to a region in which both the magnetic field B and electric field
E are zero.

2. The underlying mechanism is the coupling of the electromagnetic potential with
the complex phase of a charged particle’s wave function, and the
Aharonov–Bohm effect is accordingly illustrated by interference experiments.

Figure: Phase difference
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AB effect

Figure: Ahrankov - Bohm effect
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Dirac’s string

Dirac’s string is unobservable if ∆Φ is a multiple of 2π.

∆Φ = 2πn (36)

2πn = e

h̄
Φm (37)

where, Φm = 4πg is the flux through the surface. Therefore,

eg = nh̄

2 (38)

This is called the Dirac quantisation condition. "Thus a mere existence of one pole of
strength g would require all electric charges to be quantised by h̄c

2g
and similarly the

existence of one electric charge would require all poles to be quantised".
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Dirac string 14

Figure: Dirac’s String

14P.A.M. Dirac, Proc. Roy. Soc. A133 (1934) 60; Phys. Rev. 74 (1948) 817
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Wigner Distributions of Classical Solitons
Based on the work with V.K.Ojha [arxiv:2205.02531]
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Wigner Distributions 15

1. One of the seminal works in semi-classical physics was carried out by Wigner,
who combined the distribution of a particle’s position (coordinate) and
momentum in terms of a wave function.

2. This function known as Wigner function or Wigner distribution shows the phase
space formulation of quantum mechanics. The function defined by Wigner is
not unique, and there are more such functions generally known as the
quasi-probability distribution function.

3. The quasi probability distributions are similar to the probability distribution
function but do not satisfies all the axioms required to call them probability
distribution functions. For example, they are not always positive definite and
normalized to 1. However, it acts as a standard tool to study the
quantum-classical interface.

15Wigner, E. P. (1932). On the quantum correction for thermodynamic equilibrium. Physical Review 40(5),
749-759.

32 / 40



Motivation
To Calculate the Wigner distributions of classical solitons

▶ The motivation of us to calculate the Wigner distribution of these solitons is due
to the behaviour of these solitons, such that soliton forms the solution of
semi-classical approximation in the second quantized relativistic field theory.16

▶ Moreover, the Wigner distribution also emphasises a similar idea as a
quasiprobability distribution.

▶ We have given a short glimpse of how the Wigner distribution helps us to find
the Classical speed limit time , semi-classical speed limit time , and Quantum
speed limit time in the present context of solitons towards the end, as the
quantum speed limit time forms the foundations of quantum information
computing.

16R. Rajaraman. An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam:
North-Holland, 1982.
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Wigner distributions for the kink soliton

W (x, p) = 1
h

∫ b

a

dyψ(x+ y)ψ∗(x− y)e
iP y
ℏ (39)

The Lagrangian density for the simple kink soliton is written by

L = 1
2∂

µψ∂µψ + V (ψ)

where V (ψ) represents the potential energy which can be given by

V (ψ) = −µ2

2 ψ2 + λ

4ψ
4 + µ2

4λ
The simplest kink soliton can be given by

ψ(x) = a tanh
(√

λ

2 ax
)

(40)
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WD of Kink Solitons 17

Substituting the value of the wave function

W (x, p) = 1
h

∫ a

−a

dy

[
a tanh

(√
λ

2 a(x+ y)
)
a tanh

(√
λ

2 a(x− y)
)
e

iP y
ℏ

]
(41)

Therefore, upon substituting the boundary values we obtain the Wigner distribution
of the kink soliton as

W (x, p) = 2a3

h

[
tanh2

(√
λ

2 ax
)

− 2p2a2

9ℏ tanh2
(√

λ

2 ax
)]

(42)

17Radhakrishnan, R., and Ojha, V. K. (2022). Quasiprobability distribution of Classical solitons. arXiv
preprint arXiv:2205.02531.
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WD of Kink 18

Figure: Wigner distribution for Kink soliton; For −a < x < a and a = 10−10m

18Radhakrishnan, R., and Ojha, V. K. (2022). Quasiprobability distribution of Classical solitons. arXiv
preprint arXiv:2205.02531.
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WD of Sine gordan solitons 19

The function of the Sine-Gordan soliton can be given by

ψSG = 4
β

tan−1[e
√

αβx] (43)

With suitable boundary conditions we obtain the Wigner distribution of the
Sine-Gordan soliton as

W (x, p) = 2b
h

[
[tan−1(e

√
αβx)]2−b2

[
p2

3ℏ2 [tan−1(e
√

αβx)]2+ αβ2e2
√

αβx

3(e2
√

αβx + 1)2

]
+O(b3)

]
(44)

19Radhakrishnan, R., and Ojha, V. K. (2022). Quasiprobability distribution of Classical solitons. arXiv
preprint arXiv:2205.02531.
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WD of SG soliton 20

Figure: Wigner distribution for Sine-Gordan soliton; For −b < x < b and b = 10−10m

20Radhakrishnan, R., and Ojha, V. K. (2022). Quasiprobability distribution of Classical solitons. arXiv
preprint arXiv:2205.02531.
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Concluding remarks

1. We used the Wigner distribution to calculate the current and charge
distributions.

2. The Wigner distributions help us to find the quantum speed limit time and other
quantum information entropies.

3. Next week, I will introduce with those calculation and subsequently will discuss
the following:
▶ Polykov, t’Hooft monopoles
▶ Julia -zee dyons
▶ Euclidean instantons
▶ Instantons in Yang mills theory
▶ A naive introduction towards dualities
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Thank you very much for your attention
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