

Pion PDFs accessible in TDIS

Patrick Barry, Jefferson Lab

December 2nd, 2022

In collaboration with Chueng-Ryong Ji, Wally Melnitchouk, and Nobuo Sato

Pion PDFs in JAM

First Monte Carlo Global QCD Analysis of Pion Parton Distributions

P. C. Barry, 1 N. Sato, 2 W. Melnitchouk, 3 and Chueng-Ryong Ji 1

Large- x_{π} behavior

- Generally, the parametrization lends a behavior as $x \to 1$ of the valence quark PDF of $q_v(x) \propto (1-x)^{\beta}$
- For a fixed order analysis, analyses find $\beta pprox 1$
- Aicher, Schaefer Vogelsang (ASV) found $\beta = 2$ with threshold resummation

Phys. Rev. Lett. 105, 114023 (2011).

JAM analysis with threshold resummation

Introduction of lattice QCD data

• JAM has also included recent simulations on the lattice to constrain pion PDFs

5

Datasets -- Kinematics

- Current

 experimental data
 is limited
 kinematically with
 little overlap
- Can JLab TDIS help us learn more about pion PDFs?

Sullivan process

- Impose kinematic cuts on experimental data
- Such as lower limit on the totally *inclusive* W²

Sullivan process and W_{π}^2

- Impose kinematic cuts on experimental data
- Such as lower limit on the totally *inclusive* W²
- What about the W_{π}^2 ?

Check the resonance regions

Baseline ingredients:

$$\pi^{\pm}$$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass $m = 139.57039 \pm 0.00018$ MeV (S = 1.8) Mean life $\tau = (2.6033 \pm 0.0005) \times 10^{-8}$ s (S = 1.2) $c\tau = 7.8045$ m

γ (photon) $I(J^{PC}) = 0,1(1^{--})$

 $\begin{array}{ll} \text{Mass } m < \ 1 \times 10^{-18} \ \text{eV} \\ \text{Charge } q < \ 1 \times 10^{-46} \ e & (\text{mixed charge}) \\ \text{Charge } q < \ 1 \times 10^{-35} \ e & (\text{single charge}) \\ \text{Mean life } \tau = \text{Stable} \end{array}$

The quantum numbers of a charged π and photon result in specific outgoing mesons

Potential resonances in π DIS

Knowledge of π resonances

- In principle, we know very little
- HERA did not measure the low- W_{π}^2 region, so the strength of various resonances in this process in unknown
- Kinematic coverage in TDIS will be a great use to measure this resonance region and fill in gaps

What do we do now?

- We can look to models for guidance
- The $\pi\rho\gamma$ coupling has been studied in models (not much else)
- Dyson-Schwinger results: Maris and Tandy PRC 65, 045211 (2002)
- They calculated the decay of a rho meson into photon and pion
- This process will share the same coupling!

Resonances in π DIS

ρ -contribution to the F_2^{π}

- First, we can calculate the hadronic tensor according to this diagram
- Take the vertex and transition form factor from the $\rho \rightarrow \pi \gamma$ decay studies

$$\Lambda^{\rho\pi\gamma}_{\mu\nu}(P;Q) = \frac{g_{\rho\pi\gamma}}{m_{\rho}} \epsilon_{\mu\nu\alpha\beta} P_{\alpha} Q_{\beta} F_{\rho\pi\gamma}(Q^2)$$

$$F_{\rho\pi\gamma}(Q^2) = \frac{1.0 + Q^2}{1.0 + 3.04Q^2 + 2.42Q^4 + 0.36Q^6}$$

Calculate the $W_{\mu\nu}$

• Calculate the square of the current matrix element of $\gamma^*\pi \to \rho$

$$W_{\mu\nu}^{\pi sp} = \frac{q^2}{2m_p^2} \left(F_{\pi ps}(Q^2) \right)^2 \left\{ g_{\mu\nu} \left[m_{\pi}^2 q^2 - (q \cdot P)^2 \right] + (P \cdot q) \left[P_{\mu} q_{\nu} + q_{\mu} P_{\nu} \right] \right. \\ \left. - q^2 P_{\mu} P_{\nu} - m_{\pi}^2 q_{\mu} q_{\nu} \right\} \left\{ \delta(w_{\pi}^2 - m_{p}^2) \right\}$$

- The g/m_{ρ} coupling comes from experimental determinations of the decay channel (calculate the decay and compare with exp. value)
- Then project onto F_2^{π} using projection operators

Projection operators

• The hadronic tensor has a generic structure

$$\begin{split} W^{\mu\nu} = & (-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2})F_1(x,Q^2) \\ & + (p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu})(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu})\frac{F_2(x,Q^2)}{p \cdot q} \end{split}$$

- And projectors exist such that $P_1^{\mu\nu}W_{\mu\nu} = F_1(x,Q^2)$ $P_2^{\mu\nu}W_{\mu\nu} = F_2(x,Q^2)$
- which have a generic structure: $P_i^{\mu\nu} = ag^{\mu\nu} + bp^{\mu}p^{\nu}$
- So we solve for *a* and *b* for each

Projection operators

• Solving them, we get

$$\begin{split} P_1^{\mu\nu}(x,Q^2) &= -\frac{1}{2}g^{\mu\nu} + \frac{2x^2}{4m_\pi^2 x^2 + Q^2}p^\mu p^\nu \\ P_2^{\mu\nu}(x,Q^2) &= -\frac{Q^2 x}{4m_\pi^2 x^2 + Q^2}g^{\mu\nu} + \frac{12Q^2 x^3}{16m_\pi^4 x^4 + 8m_\pi^2 Q^2 x^2 + Q^4}p^\mu p^\nu \end{split}$$

• These should work for any DIS structures on a pion target

A word on the δ -function

- From the previous slide, we saw momentum conserving $\delta(W_{\pi}^2 m_{\rho}^2)$
- For a realistic resonance, this will have some spread
- We modify the δ -function according to the full width of the ρ peak
- From PDG: $\Gamma_{\!
 ho} = 150~{
 m MeV}$

$$\delta \left(W_{\pi}^2 - m_{\rho}^2 \right) \rightarrow \frac{1}{\pi} \frac{m_{\rho} \Gamma_{\rho}}{m_{\rho}^2 \Gamma_{\rho}^2 + \left(W_{\pi}^2 - m_{\rho}^2 \right)^2}$$

- The ρ to the F_2^{π} decreases in magnitude with increasing Q^2
- Peaks appearing at larger x_{π} with increasing Q^2

- Use our JAM pion PDFs extracted from data comparing with the model-dependent $F_2^{\pi(\rho)}$
- At low- Q^2 and intermediate-to-large x_{π} , the peak is about 2 times smaller than the partonic version
- May see some influence in the data bumps as a function of x_{π} or W_{π}

Can we say anything about other resonances?

a_2 meson (tensor)

*a*₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m = 1316.9 \pm 0.9$ MeV (S = 1.9) Full width $\Gamma = 107 \pm 5$ MeV ^[J]

a2(1320) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor/ Confidence level	р (MeV/c)
3π	(70.1 ± 2.7) %	S=1.2	623
$\eta\pi$	(14.5 ± 1.2) %		535
$\omega \pi \pi$	(10.6 ± 3.2) %	S=1.3	364
$K\overline{K}$	(4.9 ± 0.8)%		436
$\eta'(958)\pi$	(5.5 ± 0.9) $ imes 1$	0-3	287
$\pi^{\pm}\gamma$	$(2.91\pm0.27) \times 1$	0-3	651

a₁(1260) ^[i]
Mass
$$m = 1230 \pm 40$$
 MeV ^[j]
Full width Γ = 250 to 600 MeV

$$\mathscr{L}_{a_2\gamma\pi} = \frac{g_{a_2\gamma\pi}}{\underline{M_a^2}} \, \varepsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} a^{\pm}_{\alpha\lambda} (\partial^{\lambda} \partial_{\beta} \pi^{\mp}) \, .$$

- This interaction is pretty complicated....
- Save for a future work \bigcirc

 b_1 Meson (axial-vector)

 $\omega\pi$

• Any information?

• There is a measurement of this decay rate – hope for computing its contribution to F_2^{π}

Pieces for $b_1\pi\gamma$ interaction

• Vertex
$$\Gamma^{\mu\nu} \left(1^+ \to 1^- 0^- \right) = f_1 g^{\mu\nu} + f_2 \left(p_V - p_P \right)^{\mu} \left(p_A + p_P \right)^{\nu} + f_3 \left(p_V + p_P \right)^{\mu} \left(p_A + p_P \right)^{\nu} + f_4 \left(p_V - p_P \right)^{\mu} \left(p_A - p_P \right)^{\nu} + f_5 \left(p_V + p_P \right)^{\mu} \left(p_A - p_P \right)^{\nu} ,$$

• When computing the amplitude, we contract with the polarization vectors of the b_1 and the γ , which will leave us with only 2 of the above terms

$$\Gamma^{\mu\nu} = F_{b_1\pi\gamma}g^{\mu\nu} + G_{b_1\pi\gamma}k^{\mu}q^{\nu}$$

Here, q is the momentum of the b_1 and k is the photon momentum

Decay width

- First, we should calculate the decay width, to get the strength of a coupling
- See note for details

Hadronic tensor

• See note for details

Takeaways

- The decay width and hadronic tensor are independent of this *G* form factor -- can determine this *F* from the decay width that we know
- Even though we don't know G, it does not play a role for us in the Coulomb gauge

Contribution of b_1 to F_2^{π}

- Bit of a strange behavior of an increase as x → 1; not sure what's going on
- Order of magnitude smaller than from the ρ

 x_{π}

Comparison to F_2^{π} from PDFs

• Almost definitely the b_1 contribution will be suppressed and indistinguishable in the data within errors!

Impact study

Let's avoid the ρ peak

Current 11 GeV TDIS kinematics

• Plotting available 11 GeV TDIS kinematics with a few representative W_{π}^2 curves

Choosing $W_{\pi,\max}^2 = 1.04 \text{ GeV}^2$

Removing all data points that could be contaminated by resonance regions

Total pion kinematics

Performing impact study with 11 GeV

 Create pseudodata from these points and perform global analysis with available experimental data

Upgrade to 22 GeV

- Much more available kinematic range in (x, Q^2)
- Recall the W_{π}^2 cut removed large x_{π} and small Q^2 data
- New blue points will survive the cut

Kinematics with 22 GeV

• MASSIVE increase in available data points

Total kinematics

• Much larger range in x_{π} and Q^2

Impact on pion PDFs with 22 GeV

- Sizable impact on pion PDFs, especially compared with the 11 GeV beam
- Knowledge of pion PDFs increases dramatically with 22 GeV beam

Future work

- Different extrapolations of PDFs to low- Q^2 within reason
- We can look at various models to describe the ho-resonance
 - Also different strengths of the coupling
- Compare the proton F_2 with the resonances in the low- W^2 region
 - Why are pions and protons different?
- Can test quark-hadron duality by investigating moments of data

Proton example

- The expected PDFs extracted from larger-W² data are in the middle of the peaks
- For pions, we *think* peaks would not appreciably show up in the data

Proton example

 Even the moments of these peaks (integrated over the peak) do not agree with the same from PDFs

Conclusion

- Estimation from models for the strength of the exclusive ρ contribution to F_2^{π}
- Impacts from the 11 GeV TDIS experiment on pion PDFs will be limited
- The 11 GeV TDIS can measure the low- W_{π} pion structure function
 - We would learn much more about resonance region here!
- Much more constraints will come from larger 22 GeV upgrade

Backup slides

Formula for
$$W_{\pi}^2$$

• Dependent on the external tagged kinematics

$$W_{\pi}^2 = t - Q^2 \left(1 - \frac{\bar{x}_L}{x} \right)$$

What to choose for W_{π}^2

- HERA did not measure the low- W_{π}^2 region
- Potentially largest resonance comes from the ρ-meson
- Must be well above the peak of the resonance
- Estimating the safe region to be an energy above 95% of the area under the curve

