Poincare algebra of scaled interpolating variables between Instant Form Dynamics and Light-Front Dynamics

Deepasika Dayananda¹, Chueng-Ryong Ji² North Carolina State University

> APS DNP meeting October 28th ,2022

¹isamara@ncsu.edu ²crji@ncsu.edu

Interpolating Dynamic LFD ($\delta = \frac{\pi}{4}$) IFD ($\delta = 0$) $x^{\hat{+}} = \cos \delta x^0 + \sin \delta x$ δ $x^{\hat{-}} = \sin \delta x^0 - \cos \delta x^3$

 We connect two relativistic dynamics, proposed by Dirac

$$\begin{pmatrix} x^{\hat{+}} \\ x^{\hat{1}} \\ x^{\hat{2}} \\ x^{\hat{-}} \end{pmatrix} = \begin{pmatrix} \cos(\delta) & 0 & 0 & \sin(\delta) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sin(\delta) & 0 & 0 & -\cos(\delta) \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$$

Interpolation space time matrix

$$g_{\hat{\mu}\hat{\nu}} = \begin{bmatrix} \mathbf{C} & \mathbf{0} & \mathbf{0} & \mathbf{S} \\ \mathbf{0} & -1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -1 & \mathbf{0} \\ \mathbf{S} & \mathbf{0} & \mathbf{0} & -\mathbf{C} \end{bmatrix} \quad \begin{array}{l} \mathbf{S} = Sin(2\delta) \\ \mathbf{C} = Cos(2\delta) \end{array}$$

- Relate IFD and LFD, and show whole landscape in between
- Investigate the zero-mode by varying the δ parameter.
- Clarify any conceivable confusion between Infinite momentum frame and LFD

P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949)

K. Hornsbostel, Phys. Rev. D 45, 3781 (1992)

C.-R. Ji, Z. Li, and B. Ma Phys. Rev. D 98, 036017 (2018)- QED₃₊₁

B. Ma, C.-R. Ji Phys. Rev. D **104**, 036004 (2021)-QCD₁₊₁

Interpolating Poincare Matrix

$$M_{\mu\nu} = \begin{pmatrix} 0 & -K^{1} & -K^{2} & -K^{3} \\ K^{1} & 0 & J^{3} & -J^{2} \\ K^{2} & -J^{3} & 0 & J^{1} \\ K^{3} & J^{2} & -J^{1} & 0 \end{pmatrix} \qquad M_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} 0 & \mathcal{D}^{\hat{1}} & \mathcal{D}^{\hat{2}} & K^{3} \\ -\mathcal{D}^{\hat{1}} & 0 & J^{3} & -\mathcal{K}^{\hat{1}} \\ -\mathcal{D}^{\hat{2}} & -J^{3} & 0 & -\mathcal{K}^{\hat{2}} \\ -\mathcal{K}^{3} & \mathcal{K}^{\hat{1}} & \mathcal{K}^{\hat{2}} & 0 \end{pmatrix} \qquad \qquad \mathcal{K}^{\hat{1}} = -K^{\hat{1}} \sin \delta - J^{\hat{2}} \cos \delta, \\ \mathcal{K}^{\hat{2}} = J^{\hat{1}} \cos \delta - K^{\hat{2}} \sin \delta, \\ \mathcal{D}^{\hat{1}} = -K^{\hat{1}} \cos \delta + J^{\hat{2}} \sin \delta, \\ \mathcal{D}^{\hat{2}} = -J^{\hat{1}} \sin \delta - K^{\hat{2}} \cos \delta. \end{cases}$$

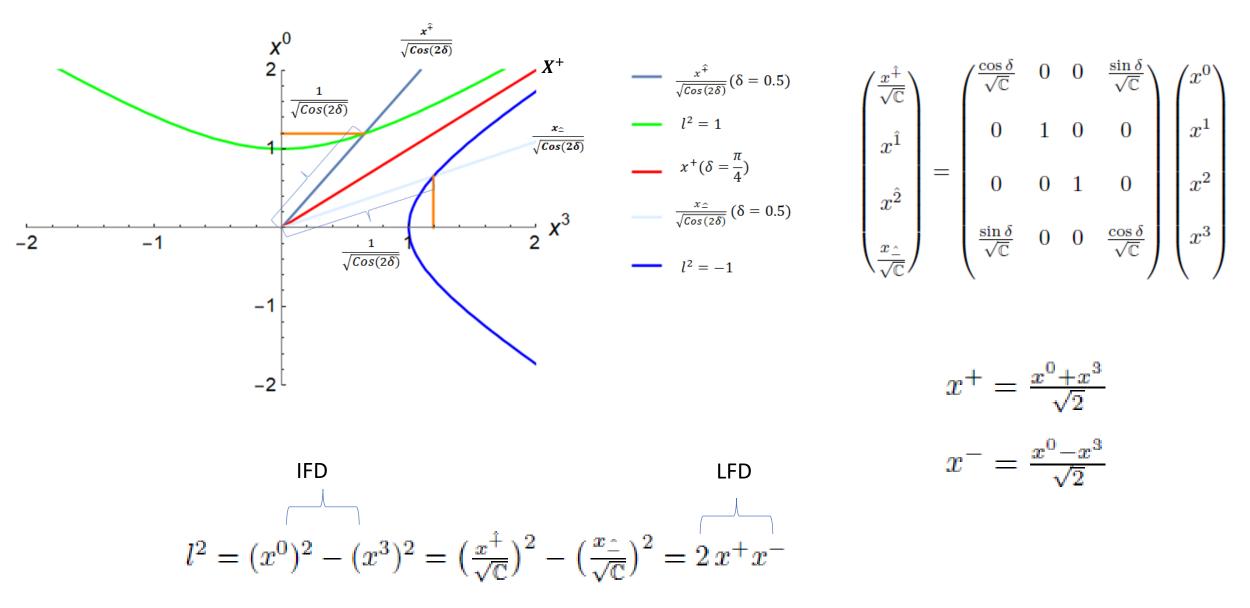
TABLE I. Kinematic and dynamic generators for different interpolation angles

	Kinematic	Dynamic
$\delta = 0$	$\mathcal{K}^{\hat{1}}$ = $-J^2$, $\mathcal{K}^{\hat{2}}$ = J^1 , J^3	$\mathcal{D}^{\hat{1}} = -K^1, \mathcal{D}^{\hat{2}} = -K^2, K^3$
$0 \le \delta < \pi/4$	$\mathcal{K}^{\hat{1}},\mathcal{K}^{\hat{2}},J^{3}$	$\mathcal{D}^{\hat{1}},\mathcal{D}^{\hat{2}},K^{3}$
$\delta = \pi/4$	$\mathcal{K}^{\hat{1}} = -E^1, \mathcal{K}^{\hat{2}} = -E^2, J^3, K^3$	$\mathcal{D}^{\hat{1}}$ = $-F^1, \mathcal{D}^{\hat{2}}$ = $-F^2$

- Among these Poincare generators, these three generators are always kinematic in the sense that the $x^{+} = 0$ plane is intact under the transformation generated by them. $\mathcal{K}^{\hat{1}}, \mathcal{K}^{\hat{2}}, J^{\hat{3}}$
- Light-Front dynamics (LFD) has one more kinematic operator than the Instant Form dynamic (IFD).

Novel Scaled Interpolating Variables

 $x^N = H.x$



$\begin{pmatrix} 0 & 1 & 2 & 3 \end{pmatrix}$	Boost operators		$(x^{\hat{+}}/\sqrt{\mathbb{C}},x^{\hat{1}},x^{\hat{2}},x_{\hat{-}}/\sqrt{\mathbb{C}})$					
(x^0, x^1, x^2, x^3)		$\left(\frac{x^{\prime \hat{+}}}{\sqrt{\mathbb{C}}}\right)$	$\frac{(\cosh(\beta_x)+1)\mathbb{C}+(\cosh(\beta_x)-1)}{2\mathbb{C}}$	$\frac{\sinh(\beta_x)\cos\delta}{\sqrt{\mathbb{C}}} 0$	$-\frac{(\cosh(\beta_x)-1)\mathbb{S}}{2\mathbb{C}}$	$\left(\frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}}\right)$		
$e^{(-i\beta_x K_1)}$ $(x^{\prime 0}) \qquad (\cosh(\beta_x) \sinh(\beta_x) 0 0) (x$.0\	$x'^{\hat{1}}$	$\frac{\sinh(\beta_x)\cos\delta}{\sqrt{\mathbb{C}}}$	$\cosh(\beta_x) = 0$	$-\frac{\sinh(\beta_x)\sin\delta}{\sqrt{\mathbb{C}}}$	$x^{\hat{1}}$		
x'^1 $\sinh(\beta_x) \cosh(\beta_x) = 0$ a	.1 .2	$x^{2} =$	0	0 1	. 0	$x^{\hat{2}}$		
$\left(x^{\prime 3}\right)$ $\left($ 0 0 0 1 $\right) \left(x\right)$	3)	$\left(\frac{x'_{\hat{-}}}{\sqrt{\mathbb{C}}}\right)$	$\frac{(\cosh(\beta_x) - 1)\mathbb{S}}{2\mathbb{C}}$	$\frac{\sinh(\beta_x)\sin\delta}{\sqrt{\mathbb{C}}} 0$	$\frac{(\cosh(\beta_x)+1)\mathbb{C}-(\cosh(\beta_x)-1)}{2\mathbb{C}}\right)$	$\left(\frac{x_{-}}{\sqrt{\mathbb{C}}}\right)$		
$e^{(-i\beta_y K_2)}$		$\left(\frac{x'^{\hat{+}}}{\sqrt{\mathbb{C}}}\right)$	$\frac{(\cosh(\beta_y)+1)\mathbb{C}+(\cosh(\beta_y)-1)}{2\mathbb{C}}$	$0 \frac{\sinh(\beta_y)\cos\delta}{\sqrt{\mathbb{C}}}$	$-\frac{(\cosh(\beta_y)-1)\mathbb{S}}{2\mathbb{C}}$	$\left(\frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}}\right)$		
$\begin{pmatrix} x'^0 \\ x'^1 \end{pmatrix}$ $\begin{pmatrix} \cosh(\beta_y) & 0 & \sinh(\beta_y) & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} x^0 \\ x^1 \end{pmatrix}$	$x'^{\hat{1}}$	0	1 0	0	$x^{\hat{1}}$		
$ \begin{pmatrix} x \\ x'^2 \\ x'^3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \sinh(\beta_y) & 0 & \cosh(\beta_y) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $		$x'^{\hat{2}} =$	$\frac{\sinh(\beta_y)\cos\delta}{\sqrt{\mathbb{C}}}$	$0 \cosh(\beta_y)$	$-\frac{\sinh(\beta_y)\sin\delta}{\sqrt{\mathbb{C}}}$	$x^{\hat{2}}$		
	/ (- /	$\left(\frac{x'_{-}}{\sqrt{\mathbb{C}}}\right)$	$\frac{(\cosh(\beta_y) - 1)\mathbb{S}}{2\mathbb{C}}$	$0 \frac{\sinh(\beta_y)\sin\delta}{\sqrt{\mathbb{C}}}$	$\left. \tfrac{(\cosh(\beta_y)+1)\mathbb{C}-(\cosh(\beta_y)-1)}{2\mathbb{C}} \right)$	$\left(\frac{x_{-}}{\sqrt{\mathbb{C}}}\right)$		
$e^{(-ieta_z K_3)}$		$\left(\frac{x^{\prime+}}{\sqrt{C}}\right)$ (c	$\cosh(\beta_z) = 0 = 0 \sinh(\beta_z)$	$\left(\frac{x^{\downarrow}}{\sqrt{C}}\right)$				
$\begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} \cosh(\beta_{z}) & 0 & 0 & \sinh(\beta_{z}) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh(\beta_{z}) & 0 & 0 & \cosh(\beta_{z}) \end{pmatrix}$	$\left(\begin{array}{c}x^{0}\\x^{1}\\x^{2}\\x^{3}\end{array}\right)$	$ \begin{vmatrix} x'^{\hat{1}} \\ x'^{\hat{2}} \\ \frac{x'^{\hat{2}}}{\sqrt{\mathbb{C}}} \end{vmatrix} = \left(s \right) $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^{\hat{1}}$ $x^{\hat{2}}$ $\frac{x_{\hat{-}}}{\sqrt{\mathbb{C}}}$	Form Invariant and independent of interpolation angle			

Rotation operators		$(x^{\hat{+}}/\sqrt{\mathbb{C}},x^{\hat{1}},x^{\hat{2}},x_{\hat{-}}/\sqrt{\mathbb{C}})$				
$ \begin{pmatrix} x^{0}, x^{1}, x^{2}, x^{3} \end{pmatrix} $ $ e^{-iJ_{1}\theta_{x}} $ $ \begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\theta_{x} & -\sin\theta_{x} \\ 0 & 0 & \sin\theta_{x} & \cos\theta_{x} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} $	$\begin{array}{c} x'^{\hat{1}} \\ x'^{\hat{2}} \end{array} =$	$\frac{\frac{2-\cos\theta_x\sin\delta^2}{\mathbb{C}}}{0}$ $\frac{\frac{\sin\delta\sin\theta_x}{\sqrt{\mathbb{C}}}}{\frac{\sin(\theta_x/2)^2\mathbb{S}}{\mathbb{C}}}$	$\begin{array}{l} 0 \frac{\sin \delta \sin \theta_x}{\sqrt{\mathbb{C}}} \\ 1 0 \\ 0 \cos \theta_x \\ 0 \frac{\cos \delta \sin \theta_x}{\sqrt{\mathbb{C}}} \end{array}$	$ \begin{array}{c} -\frac{(\sin(\theta_x/2)^2\mathbb{S})}{\mathbb{C}} \\ 0 \\ -\frac{\cos\delta\sin\theta_x}{\sqrt{\mathbb{C}}} \\ \frac{(\cos\delta^2\cos\theta_x - \sin\delta^2)}{\mathbb{C}} \end{array} $		
$e^{-iJ_{2}\theta_{y}} \begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_{y} & 0 & \sin\theta_{y} \\ 0 & 0 & 1 & 0 \\ 0 & -\sin\theta_{y} & 0 & \cos\theta_{y} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$	$ \begin{vmatrix} \sqrt{\mathbb{C}} \\ x'^{\hat{1}} \\ x'^{\hat{2}} \end{vmatrix} = $	$\frac{\frac{1}{2} - \cos \theta_y \sin \delta^2}{\mathbb{C}}$ $\frac{\frac{\sin \delta \sin \theta_y}{\sqrt{\mathbb{C}}}}{0}$ $\frac{\sin(\theta_y/2)^2 \mathbb{S}}{\mathbb{C}}$	$-\frac{\sin\delta\sin\theta_y}{\sqrt{\mathbb{C}}} 0$ $\cos\theta 0$ $0 1$ $-\frac{\cos\delta\sin\theta_y}{\sqrt{\mathbb{C}}} 0$	$ \begin{array}{c} \frac{\cos\delta\sin\theta_y}{\sqrt{\mathbb{C}}} \\ 0 \\ x^2 \\ x^2 \end{array} $		
$ e^{-iJ_{3}\theta_{z}} \begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_{z} & -\sin\theta_{z} & 0 \\ 0 & \sin\theta_{z} & \cos\theta_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} $	$\begin{pmatrix} \frac{x'^{\hat{+}}}{\sqrt{\mathbb{C}}} \\ x'^{\hat{1}} \\ x'^{\hat{2}} \\ \frac{x'_{\hat{-}}}{\sqrt{\mathbb{C}}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \cos \theta \\ 0 & \sin \theta \\ 0 & 0 \end{pmatrix}$	$\theta_z = -\sin \theta_z = 0$	$\begin{pmatrix} \frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}} \\ x^{\hat{1}} \\ x^{\hat{2}} \\ \frac{x_{\hat{-}}}{\sqrt{\mathbb{C}}} \end{pmatrix}$	 Form Invariant and independent of interpolation angle 		

Kinematic Generator $\mathcal{K}^{\hat{1}}$

$$\mathcal{K}^{\hat{1}} = -K^1 \sin \delta - J^2 \cos \delta$$

 $e^{i\beta_1 \mathcal{K}^{\hat{1}}}$

$$= \begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix}^{2} = \begin{pmatrix} \frac{\cos \delta^{2} - \cos \alpha_{1} \sin \delta^{2}}{\mathbb{C}} & \frac{\sin \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & 0 & \frac{\sin (\alpha_{1}/2)^{2} \mathbb{S}}{\mathbb{C}} \\ \frac{\sin \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & \cos \alpha_{1} & 0 & \frac{\cos \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} \\ 0 & 0 & 1 & 0 \\ -\frac{\sin (\alpha_{1}/2)^{2} \mathbb{S}}{\mathbb{C}} & -\frac{\cos \delta \sin \alpha_{1}}{\sqrt{\mathbb{C}}} & 0 & \frac{\cos \delta^{2} \cos \alpha_{1} - \sin \delta^{2}}{\mathbb{C}} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} \qquad \alpha_{1} = \beta_{1} \sqrt{\mathbb{C}} \\ \\ \kappa^{1} \rightarrow -J^{2} & \text{IFD} \\ \kappa^{1} \rightarrow -J^{2} & \text{IFD} \\ 0 & \cos [\beta 1] & 0 & \sin [\beta 1] \\ 0 & 0 & 1 & 0 \\ 0 & -\sin [\beta 1] & 0 & \cos [\beta 1] \end{pmatrix} \qquad e^{-i\beta_{1}E_{1}} = \begin{pmatrix} \frac{1}{4}(4 + \beta 1^{2}) & \frac{\beta 1}{\sqrt{2}} & 0 & \frac{\beta 1^{2}}{4} \\ \frac{\beta 1}{\sqrt{2}} & 1 & 0 & \frac{\beta 1}{\sqrt{2}} \\ 0 & 0 & 1 & 0 \\ -\frac{\beta 1^{2}}{4} & -\frac{\beta 1}{\sqrt{2}} & 0 & 1 - \frac{\beta 1^{2}}{4} \end{pmatrix}$$

 eta_1 is an angle

 $e^{-i\beta_1 J^2}$

 eta_1 is the rapidity

$$\beta_{1}\mathcal{K}^{\hat{1}} \qquad (x^{\hat{+}}/\sqrt{\mathbb{C}}, x^{\hat{1}}, x^{\hat{2}}, x_{\hat{-}}/\sqrt{\mathbb{C}}) \qquad \alpha_{1} = \beta_{1}\sqrt{\mathbb{C}}$$

$$\begin{pmatrix} \frac{x'^{\hat{+}}}{\sqrt{\mathbb{C}}} \\ x'^{\hat{1}} \\ x'^{\hat{2}} \\ \frac{x'_{\hat{-}}}{\sqrt{\mathbb{C}}} \end{pmatrix}^{=} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_{1} & 0 & \sin\alpha_{1} \\ 0 & 0 & 1 & 0 \\ 0 & -\sin\alpha_{1} & 0 & \cos\alpha_{1} \end{pmatrix} \begin{pmatrix} \frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}} \\ x^{\hat{1}} \\ x^{\hat{2}} \\ \frac{x_{\hat{-}}}{\sqrt{\mathbb{C}}} \end{pmatrix}$$

 e^{\imath}

• $\mathcal{K}^{\hat{1}}$ plays the role of rotation around y axis for all interpolation angles in this new basis

*K*² plays the role of rotation around x axis for all interpolation angles in this new basis

• Kinematic operators exclusively independent of interpolation angles in the new basis

$$\begin{split} \mathbf{Kinematic \ Generator \ } \mathcal{K}^{\hat{2}} \\ \mathcal{K}^{\hat{2}} &= J^{1}\cos\delta - K^{2}\sin\delta \\ e^{i\beta_{2}\mathcal{K}^{\hat{2}}} & \alpha_{2} = \beta_{2}\sqrt{\mathbb{C}} \\ \begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix} = \begin{pmatrix} \frac{\cos\delta^{2} - \cos\alpha_{2}\sin\delta^{2}}{\mathbb{C}} & 0 & \frac{\sin\delta\sin\alpha_{1}}{\sqrt{\mathbb{C}}} & \frac{\sin(\alpha_{1}/2)^{2}\mathbb{S}}{\mathbb{C}} \\ 0 & 1 & 0 & 0 \\ \frac{\sin\delta\sin\alpha_{2}}{\sqrt{\mathbb{C}}} & 0 & \cos\alpha_{2} & \frac{\cos\delta\sin\alpha_{1}}{\sqrt{\mathbb{C}}} \\ -\frac{\sin(\alpha_{2}/2)^{2}\mathbb{S}}{\mathbb{C}} & 0 & -\frac{\cos\delta\sin\alpha_{2}}{\sqrt{\mathbb{C}}} & \frac{\cos\delta^{2}\cos\alpha_{2} - \sin\delta^{2}}{\mathbb{C}} \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} \end{split}$$

$$\begin{pmatrix} \frac{x'^{\hat{+}}}{\sqrt{\mathbb{C}}} \\ x'^{\hat{1}} \\ x'^{\hat{2}} \\ \frac{x'_{\hat{-}}}{\sqrt{\mathbb{C}}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \alpha_2 & \sin \alpha_2 \\ 0 & 0 & -\sin \alpha_2 & \cos \alpha_2 \end{pmatrix} \begin{pmatrix} \frac{x^{\hat{+}}}{\sqrt{\mathbb{C}}} \\ x^{\hat{1}} \\ \frac{x^{\hat{2}}}{\sqrt{\mathbb{C}}} \end{pmatrix}$$

 $M_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} -\mathcal{D}^{\hat{1}} & 0 & J^{3} & -\mathcal{K}^{\hat{1}} \\ -\mathcal{D}^{\hat{2}} & -J^{3} & 0 & -\mathcal{K}^{\hat{2}} \end{pmatrix}$

- $\mathcal{D}^{\hat{1}}, \mathcal{D}^{\hat{2}}$ are dynamic operators in all interpolation angle
- $\mathcal{K}^{\hat{1}}, \mathcal{K}^{\hat{2}}$ and J_3 are kinematic operators in all interpolation angle and K^3 is a kinematic operator exactly at the LF
- We observe that all kinematic operators exclusively independent of interpolation angle in the new basis and they are form invariant.

Generalized Helicity operator

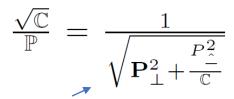
$$\begin{split} \mathcal{J}_3 |p;j,m\rangle_\delta &= TJ_3T^{-1}T |0;j,m\rangle = m |p;j,m\rangle_\delta,\\ \mathcal{J}_3 &= TJ_3T^{-1} \end{split}$$

$$T = T_{12}T_3 = e^{i\beta_1 \mathcal{K}^{\hat{1}} + i\beta_2 \mathcal{K}^{\hat{2}}} e^{-i\beta_3 K^3}$$

$$\mathcal{J}_{3} = J_{3} \cos \alpha + (\beta_{1} J_{1} + \beta_{2} J_{2}) \frac{\sin \alpha}{\sqrt{\beta_{1}^{2} + \beta_{2}^{2}}}$$

$$\mathcal{J}_3 = \frac{1}{\sqrt{\mathbf{P}_\perp^2 + \frac{P_\perp^2}{\mathbb{C}}}} \left(P^1 J_1 + P^2 J_2 + \frac{P_\perp}{\sqrt{\mathbb{C}}} J_3 \right)$$

$$\sin \alpha = \frac{\sqrt{\mathbf{P}_{\perp}^2 \mathbb{C}}}{\mathbb{P}}$$
$$\frac{\beta_j}{\alpha} = \frac{P^j}{\sqrt{\mathbf{P}_{\perp}^2 \mathbb{C}}},$$
$$\alpha = \sqrt{\mathbb{C}(\beta_1^2 + \beta_2^2)}$$



Magnitude of the total momentum in the new basis

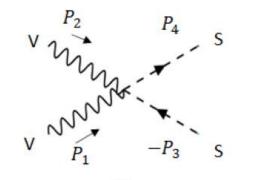
$$\vec{P}^N = (P^1, P^2, \frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}})$$

$$\mathcal{J}_3 = rac{oldsymbol{P}^{oldsymbol{N}}.oldsymbol{J}}{|oldsymbol{P}^{oldsymbol{N}}|}$$
 Form invariant with Jacob-Wick Helicity

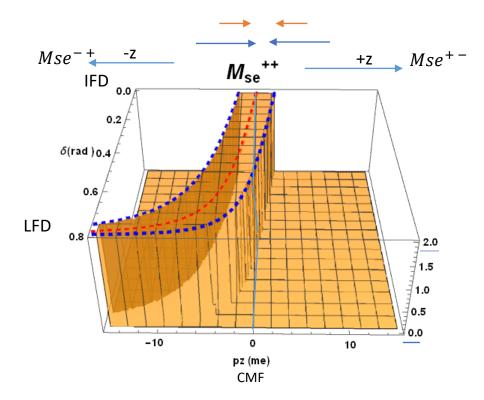
H. Leutwyler and J. Stern, Ann Phys. (N.Y.) **112** 94 (1978)
M. Jacob and G. Wick, Ann. Phys. **7**, 404 (1959)
Z.Li, M.An, and C.-R.Ji, Phys. Rev. D. **92**, 105014 (2015)

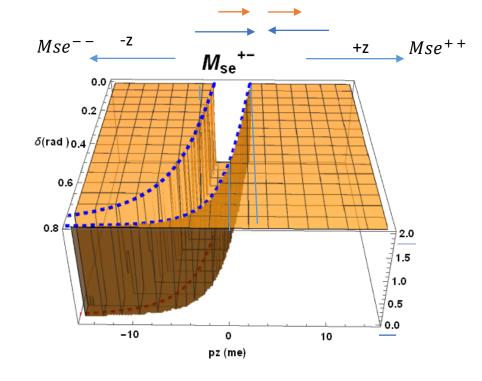
Scalar particle and its anti-particle production by two neutral massive spin-1 particles

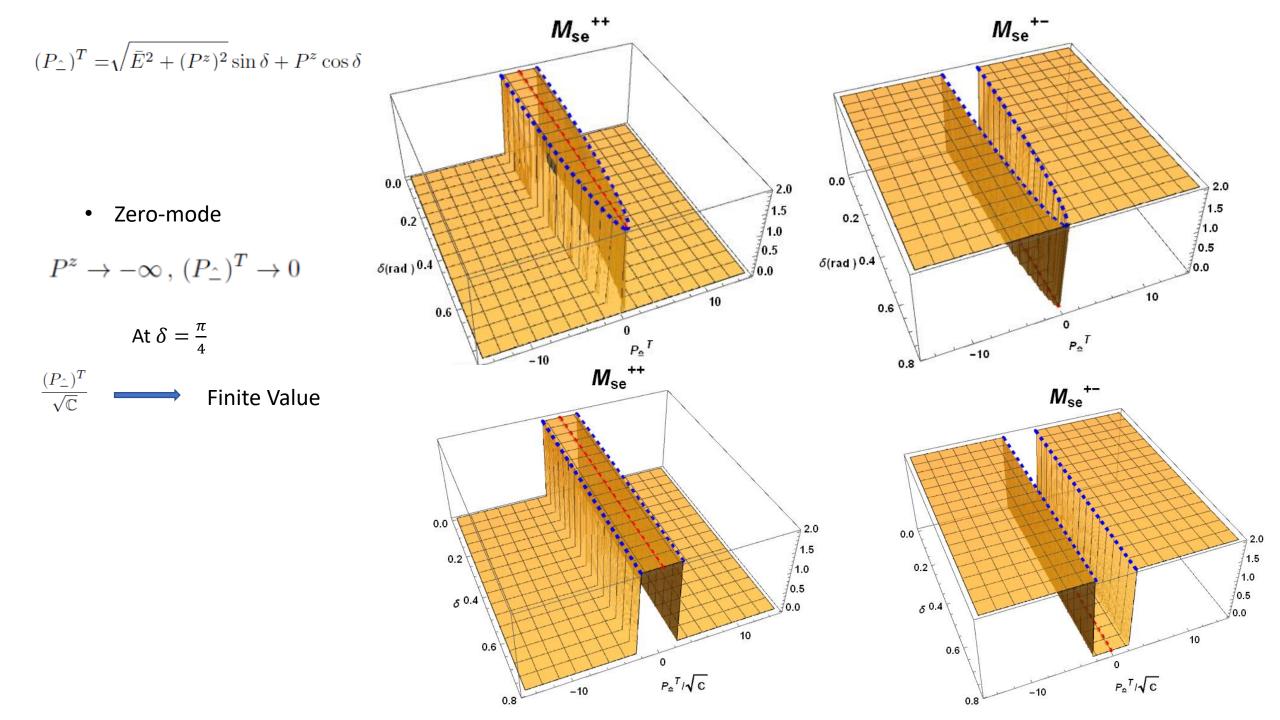
• Seagull Channel

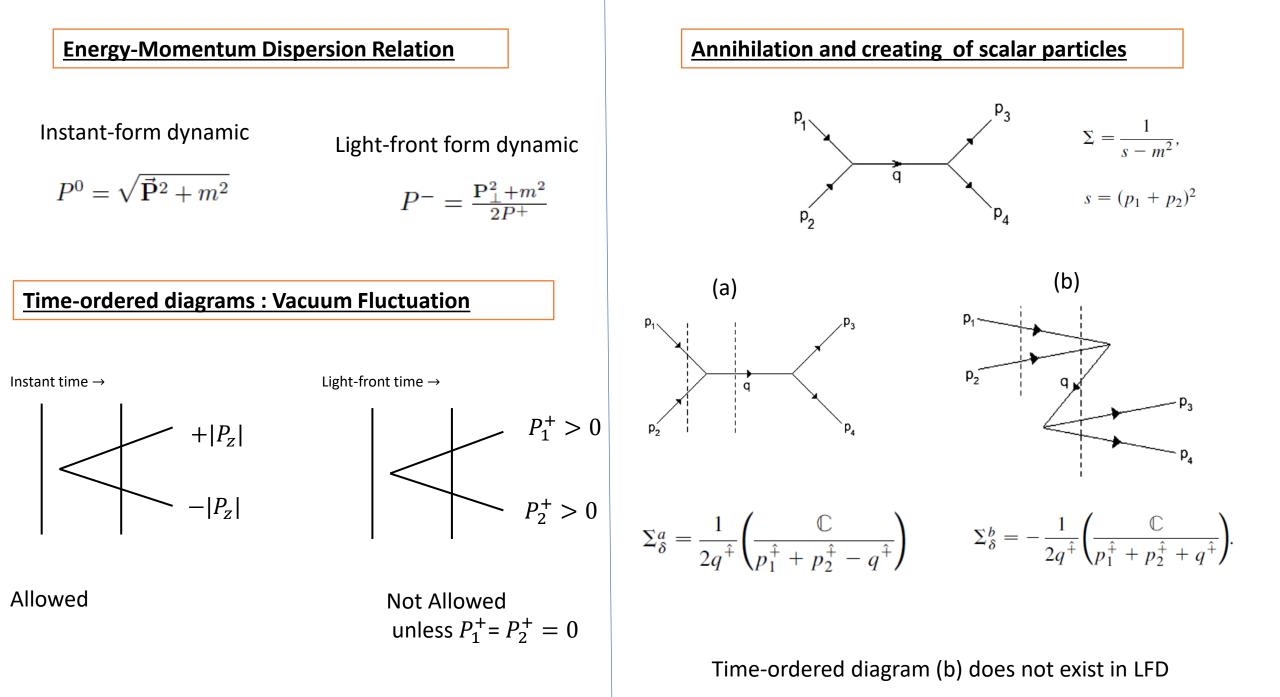


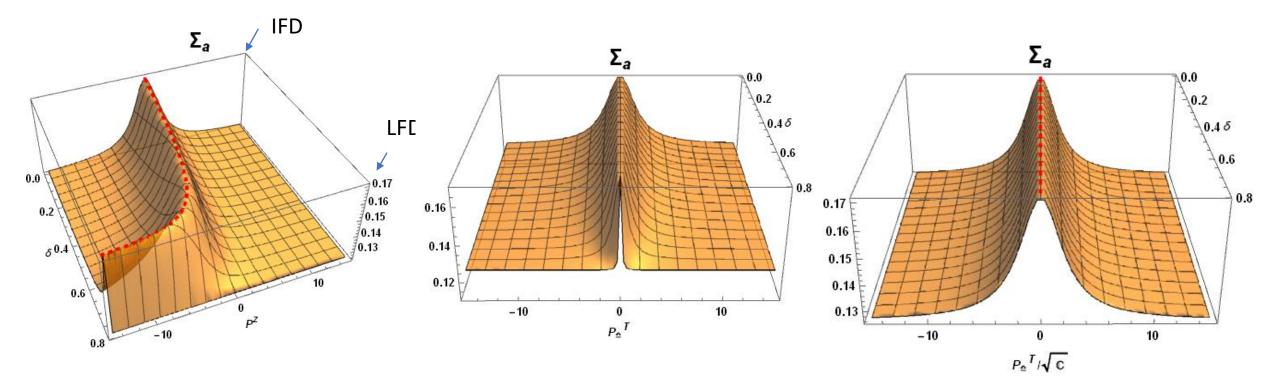
$$M_{se}^{\lambda_1\lambda_2} = -2g_{\hat{\mu}\hat{\nu}}\varepsilon^{\hat{\mu}} (p_1,\lambda_1) \varepsilon^{\hat{\nu}} (p_2,\lambda_2)$$

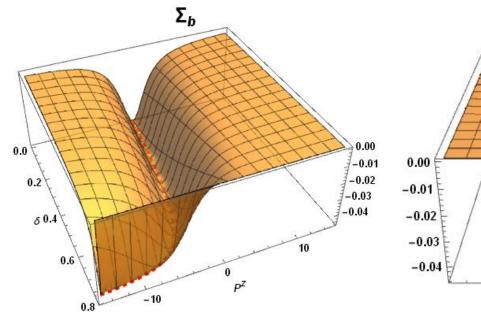


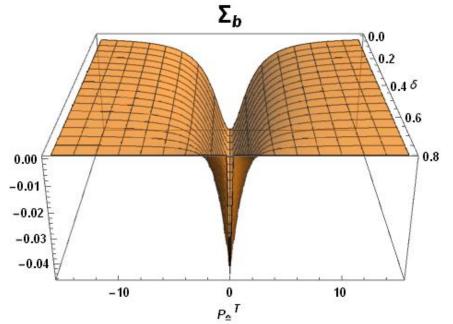


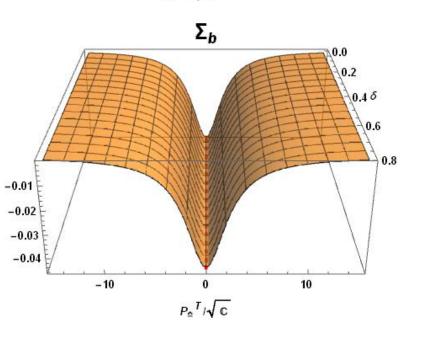












<u>Conclusion</u>

- Novel scaled interpolating basis can recover usual dispersion relations in IFD , LFD also in between
- It can produce form-invariance characteristics of kinematic operators which clearly distinguishes kinematic operators from dynamic operators.
- The functions of kinematic operators also can preserve the form invariance in the scaled interpolating basis.- Generalized helicity operator
- Scale interpolating variables can be used to magnify the vicinity of zero modes which enables us to understand more physics in the zero mode.

Thank you

Poincare Algebra in the new basis (45 commutation relations)

	$\frac{P^{\downarrow}}{\sqrt{\mathbb{C}}}$	$P^{\hat{1}}$	$P^{\hat{2}}$	$\frac{P_{-}}{\sqrt{\mathbb{C}}}$	$\mathcal{D}^{\hat{1}}$	$\mathcal{D}^{\hat{2}}$	J^3	$\mathcal{K}^{\hat{1}}$	$\mathcal{K}^{\hat{1}}$	K^3
$\frac{P^{\ddot{+}}}{\sqrt{\mathbb{C}}}$	0	0	0	0	$\frac{iP^{\hat{1}}}{\sqrt{\mathbb{C}}}$	$\frac{iP^2}{\sqrt{\mathbb{C}}}$	0	0	0	$\frac{iP_{\hat{-}}}{\sqrt{\mathbb{C}}}$
$P^{\hat{1}}$	0	0	0	0	$\frac{-iP^{\mp}}{\mathbb{C}} + \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}$	0	$-iP^{2}$	$-iP_{\hat{-}}$	0	0
$P^{\hat{2}}$	0	0	0	0	0	$\frac{-iP^{\tilde{+}}}{\mathbb{C}} + \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}$	$iP^{\hat{1}}$	0	$-iP_{\hat{-}}$	0
$\frac{P_{\hat{-}}}{\sqrt{\mathbb{C}}}$	0	0	0	0	$\frac{-i\mathbb{S}P^{\hat{1}}}{\sqrt{\mathbb{C}}}$	$\frac{-i\mathbb{S}P^2}{\sqrt{\mathbb{C}}}$	0	$i\sqrt{\mathbb{C}}P^{\hat{1}}$	$i\sqrt{\mathbb{C}}P^{\hat{2}}$	$rac{iP^{\tilde{+}}}{\sqrt{\mathbb{C}}}$
$\mathcal{D}^{\hat{1}}$	$-\frac{iP^{I}}{\sqrt{\mathbb{C}}}$	$\frac{iP^{\hat{+}}}{\mathbb{C}} - \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}\Big)$	0	$\frac{i \mathbb{S}P^1}{\sqrt{\mathbb{C}}}$	0	$-i\mathbb{C}J^3$	$-i\mathcal{D}^2$	$-iK^3$	$-i\mathbb{S}J^3$	$-i\mathbb{S}\mathcal{D}^{\hat{1}}+i\mathbb{C}\mathcal{K}^{\hat{1}}$
$\mathcal{D}^{\hat{2}}$	$-\frac{iP^2}{\sqrt{\mathbb{C}}}$	0	$\frac{iP^{\tilde{+}}}{\mathbb{C}} - \frac{i\mathbb{S}P_{\hat{-}}}{\mathbb{C}}$	$\frac{i \mathbb{S}P^2}{\sqrt{\mathbb{C}}}$	$i\mathbb{C}J^3$	0	$i\mathcal{D}^{\hat{1}}$	$i \mathbb{S}J^3$	$-iK^3$	$-i\mathbb{S}\mathcal{D}^{\hat{2}}+i\mathbb{C}\mathcal{K}^{\hat{2}}$
J^3	0	$iP^{\hat{2}}$	$-iP^{\hat{1}}$	0	$i {\cal D}^{\hat 2}$	$-i\mathcal{D}^{\hat{1}}$	0	$i\mathcal{K}^{\hat{2}}$	$-i\mathcal{K}^{\hat{1}}$	0
$\mathcal{K}^{\hat{1}}$	0	$iP_{\hat{-}}$	0	$-i\sqrt{\mathbb{C}}P^{\hat{1}}$	iK^3	$-i\mathbb{S}J^3$	$-i\mathcal{K}^{\hat{2}}$	0	$i\mathbb{C}J^3$	$i\mathbb{S}\mathcal{K}^{\hat{1}}+i\mathbb{C}\mathcal{D}^{\hat{1}}$
\mathcal{K}^2	0	0	$iP_{\hat{-}}$	$-i\sqrt{\mathbb{C}}P^2$	$i \mathbb{S}J^3$	iK^3	$i\mathcal{K}^{\hat{1}}$	$-i\mathbb{C}J^3$	0	$i\mathbb{S}\mathcal{K}^2 + i\mathbb{C}\mathcal{D}^2$
K^3	$\frac{-iP_{\hat{-}}}{\sqrt{\mathbb{C}}}$	0	0	$\frac{-iP^{\hat{+}}}{\sqrt{\mathbb{C}}}$	$\mathbb{S}\mathcal{D}^{\hat{1}} + i\mathbb{C}\mathcal{K}^{\hat{1}}$	$i\mathbb{S}\mathcal{D}^{\hat{2}}-i\mathbb{C}\mathcal{K}^{\hat{2}}$	0	$-i\mathbb{S}\mathcal{K}^{\hat{1}}-i\mathbb{C}\mathcal{D}^{\hat{1}}$	$-i\mathbb{S}\mathcal{K}^{\hat{2}}-i\mathbb{C}\mathcal{D}^{\hat{2}}$	0

• Apply to a rest particle of mass M with spin S

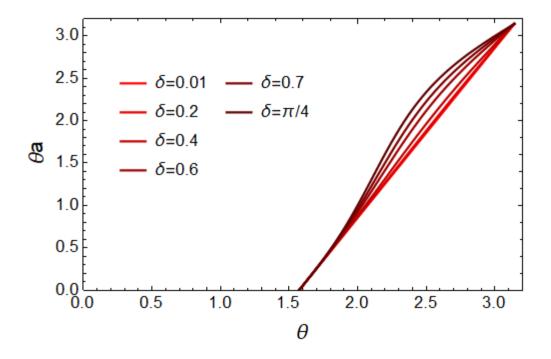
 $P = \{M, 0, 0, 0\} \qquad S = \{0, 0, 0, 1\}$

IFD $e^{-i\beta_1 J^2}$

 $P' = \{M, 0, 0, 0\}$

 $\mathsf{S'=}\{0,\mathsf{Sin}[\beta1],0,\mathsf{Cos}[\beta1]\}$

$$P' = \left\{ \frac{1}{4} M(4 + \beta 1^2), \frac{M\beta 1}{\sqrt{2}}, 0, -\frac{M\beta 1^2}{4} \right\} \qquad \text{Tan}[\theta] = -\frac{2\sqrt{2}}{\beta 1}$$
$$S' = \left\{ \frac{\beta 1^2}{4}, \frac{\beta 1}{\sqrt{2}}, 0, 1 - \frac{\beta 1^2}{4} \right\}$$



$$Cos[\theta a] = \frac{4 - \beta 1^2}{\sqrt{16 + \beta 1^4}} \qquad Cos[\theta a] = \frac{1 - 2Cot[\theta]^2}{\sqrt{1 + 4Cot[\theta]^4}}$$