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Motivation

• All visible matter is 
made up of atoms
• The mass of these 

atoms are largely 
from the nucleus
• The nucleus is made 

up of protons and 
neutrons
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Motivation

• In turn, these protons 
and neutrons are made 
of quarks and gluons
• We want to study the 

structure of the nuclear 
matter

(Image: CERN)
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What’s the problem?

Quarks and gluons are not directly measurable because of color
confinement!

Have to be inferred from experimental data
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How to handle this

• We make use of QCD, which allows us to 
study the structure of hadrons in terms of 
partons (quarks, antiquarks, and gluons)
• Use factorization theorems to separate 

hard partonic physics out of soft, non-
perturbative objects to quantify structure
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Game plan

What to do:
• Define a structure of hadrons in terms of quantum field theories
• Identify physical observables that can be theoretically factorized with 

controllable approximations, or factorizable lattice QCD observables
• Perform global QCD analysis as structures are universal and are the 

same in all processes
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Complicated Inverse Problem

• Factorization theorems involve convolutions of hard perturbatively 
calculable physics and non-perturbative objects

• Parametrize the non-perturbative objects and perform global analysis
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What do we know about structures?

• Most well-known structure is through longitudinal structure of 
hadrons, particularly protons

C. Cocuzza, et al., Phys. Rev. D 104, 074031 (2021) 9barryp@jlab.org



Other structures?

• To give deeper insights into color confined 
systems, we shouldn’t limit ourselves to 
proton structures
• Pions are also important because of their 

Goldstone-boson nature while also being 
made up of quarks and gluons
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• Much less available 
data than in the 
proton case

• Still valuable to 
study



Pion PDFs in JAM
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Pion PDFs from lattice + experimental data

• The inclusion of lattice QCD data along with experimental data can 
also help us to reveal pion structure
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Large transverse momentum
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• 𝑝! dependent DY in collinear factorization
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Effects of Each Dataset

• Not much 
impact from 
the transverse-
momentum 
dependent DY 
data
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3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs

16barryp@jlab.org



Unpolarized TMD PDF

• 𝒃𝑻 is the Fourier conjugate to the intrinsic transverse momentum of 
quarks in the hadron, 𝒌𝑻
• We can learn about the coordinate space correlations of quark fields 

in hadrons
• Modification needed for UV and rapidity divergences; acquire 

regulators: 
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Factorization for low-𝑞! Drell-Yan

• Like collinear observable, a hard part with two functions that describe 
structure of beam and target
• So called “𝑊”-term, valid only at low-𝑞!
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Evolution equations for the TMD PDF
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Rapidity scale

Collins-Soper (CS) 
kernel

Has its own renormalization group equation

Anomalous dimension 
of CS kernel

Anomalous dimension 
of TMDPDF

Renormalization scale



Small 𝑏! operator product expansion

• At small 𝑏!, the TMD PDF can be described in terms of its OPE:

• where '𝐶 are the Wilson coefficients, and 𝑓#/𝒩 is the collinear PDF
• Breaks down when 𝑏! gets large
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𝑏∗ prescription

• A common approach to regulating large 𝑏! behavior

• At small 𝑏!, 𝑏∗ 𝑏! = 𝑏!
• At large 𝑏! , 𝑏∗ 𝑏! = 𝑏'()
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Must choose an appropriate value; 
a transition from perturbative to 
non-perturbative physics
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Introduction of non-perturbative functions

• Because 𝑏∗ ≠ 𝑏!, have to non-perturbatively describe large 𝑏!
behavior

Completely general –
independent of quark, 

hadron, PDF or FF

Non-perturbative function 
dependent in principle on 

flavor, hadron, etc.
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Full description of the TMD

• Have individual pieces that are sensitive to low-𝑏! spectrum 
(perturbative) and the high-𝑏! (non-perturbative)
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TMD factorization in Drell-Yan 

• In small-𝑞* region, use the Collins-Soper-Sterman (CSS) formalism and 
𝑏∗ prescription

24

Non-perturbative 
pieces

Perturbative 
pieces

Can these data constrain the 
pion collinear PDF?

Non-perturbative piece of the CS kernel barryp@jlab.org



Nuclear TMD PDFs

• The TMD factorization allows for the description of a quark inside a 
nucleus to be '𝑓#/+
• However, the intrinsic non-perturbative structure will in-principle 

change from nucleus-to-nucleus
• Want to model these in terms of protons and neutrons as we don’t 

have enough observables to separately parametrize different nuclei
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Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton 

• Each object on the right side independently obeys the CSS equation
• Assumption that the bound proton and bound neutron follow TMD 

factorization

• Make use of isospin symmetry in that 𝑢/𝑝/𝐴 ↔ 𝑑/𝑛/𝐴, etc.
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Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the 
flavor-dependent pieces of the TMD PDF as
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Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., 
Phys. Rev. Lett 129, 242001 (2022).

• Where 𝑎𝒩 is an additional parameter to be fit
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Datasets in the 𝑞!-dependent analysis

• Total of 383 number of points
• All fixed target, low-energy data
• We perform a cut of 𝑞!'() < 0.25 𝑄
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A few words on nuclear dependence

• The ratios from the E866 
experiment provided a look 
to nuclear effects in TMDs 
as well as the importance 
of nuclear collinear effects
• Ignoring any nuclear 

corrections in TMDs and 
collinear PDFs
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Including nuclear dependence

• Better description 
when including the 
nuclear dependence 
in the collinear PDF 
and TMD
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Kinematics in 𝑥#, 𝑥$
• Using the kinematic 

mid-point from each 
of the bins, we show 
the range in 𝑥. and 
𝑥/
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Parametrizations of the TMDs

• First perform single fits of these data to explore various aspects
• Many types of parametrizations have been used in the past
• For the “intrinsic” non-perturbative TMD, we perform fits with each 

of the following

barryp@jlab.org 33

Gaussian Exponential
Gaussian-to-
Exponential



Parametrizations

• We can test whether or not the 𝑥-dependence is important for these 
functions (it is!)
• For these 𝑔# functions, we have the following

• 4 free parameters for each scheme (5 for Gaussian-to-Exponential)
• We may also open up these for each flavor in the proton (𝑢, 𝑑, and 
𝑠𝑒𝑎) and for the pion (𝑣𝑎𝑙, 𝑠𝑒𝑎)
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Problem describing data

• The E288 400 GeV data are 
difficult to describe the same 
above and below the Υ
resonance
• Theory overpredicts data 

when 𝑄 > 11GeV
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Problem describing data

• The E288 400 GeV data are 
difficult to describe the same 
above and below the Υ
resonance
• Theory overpredicts data 

when 𝑄 > 11GeV
• Could treat as separate 

datasets – separate 
normalizations:
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MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a 
complicated form for the non-perturbative function

• 11 free parameters for each hadron! (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter)barryp@jlab.org 37

Universal CS kernel



Resulting 𝜒$ for each parametrization
• MAP gives best 

overall
• How significant?
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Perform the Monte Carlo

• We use the MAP parametrization
• Now, we can include the pion collinear PDF and its collinear datasets
• Include an additional 225 collinear data points
• Simultaneously extract

1. Pion TMD PDFs
2. Pion collinear PDFs
3. Proton TMD PDFs
4. Nuclear dependence
5. Non-perturbative CS kernel
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Data and theory agreement

• Fit both 𝑝𝐴 and 𝜋𝐴 DY data and achieve good agreement to both
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Extracted pion PDFs

• The small-𝑞! data do not constrain much the PDFs
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Conditional density

• We define a quantity in which describes the ratio of the 2-
dimensional density to the integrated, 𝑏!-independent number 
density, dependent on “𝑏! given 𝑥”
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Resulting TMD PDFs 
of proton and pion
• Shown in the range 

where pion and proton 
are both constrained
• Broadening appearing 

as 𝑥 increases
• Up quark in pion is 

narrower than up 
quark in proton 
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Average 𝑏!
• The conditional expectation value of 𝑏! for a given 𝑥

• Shows a measure of the transverse correlation in coordinate space of 
the quark in a hadron for a given 𝑥
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Resulting average 𝑏!
• Pion’s 𝑏! 𝑥⟩ is 
5.3 − 7.5𝜎 smaller 
than proton in this 
range
• Decreases as 𝑥

decreases
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Possible explanation

• At large 𝑥, we are in a valence region, where only the valence quarks 
are populating the momentum dependence of the hadron

bT
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Possible explanation

• At small 𝑥, sea quarks and potential 𝑞M𝑞 bound states allowing only for 
a smaller bound system

bT
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Transverse EMC effect

• Compare the 
average 𝑏! given 𝑥
for the up quark in 
the bound proton to 
that of the free 
proton
• Less than 1 by          
∼ 5 − 10% over the 
𝑥 range
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Outlook

• Future studies needed for theoretical explanations of these 
phenomena
• Important to study various hadronic systems to provide a more 

complete picture of strongly interacting quark-gluon systems 
emerging from QCD
• Lattice QCD can in principle calculate any hadronic state – look to 

kaons, rho mesons, etc.
• Future tagged experiments such as at EIC and JLab 22 GeV can 

provide measurements for neutrons, pions, and kaons
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Future experiment – pion SIDIS

𝑒𝑁 → 𝑒!𝑁′𝜋𝑋
•Measure an outgoing pion 

in the TDIS experiment
• Gives us another observable 

sensitive to pion TMDs
• Needed for tests of 

universality
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Kinematics with 11 GeV

• Still a cut on 𝑊0/ = 1.04 GeV/, but SIDIS requires more phase space
• Hardly anything available with 𝑧 = 0.2, 𝑃1,! = 0.2 GeV

barryp@jlab.org 51



Future work – entire 𝑞! range
•We have shown the ability to 

perform a global analysis separately 
of the large-𝑞" and small- 𝑞" regions 
in the pion
• Tackle the challenging “asymptotic 

region”
• Can we combine these analyses in 

the 𝜋-sector?
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• From Bury, et al. arXiv:2201.07114

• The outer green band is the uncertainty from MSHT20 PDFs
• Red band is the statistical uncertainty from the data
• Important information about PDFs in this regime!

Future work – High energy PDF+TMD
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Backup
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𝑍-scores

• A measure of significance with 
respect to the normal distribution
• Null hypothesis is the expected 𝜒/

distribution
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𝑍-scores

• Example of 
significance of the 
𝜒/ values with 
respect to the 
expected 𝜒/
distribution
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E772 data

• Let’s take a look at 
the data and theory 
agreement
• Data do not always 

follow the general 
trend and 
uncertainties appear 
underestimated
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The Collins-Soper (CS) kernel

• From the simultaneous 
𝜋𝐴 and 𝑝𝐴 analysis, 
which uses the same CS 
kernel, we compare with 
the lattice-generated 
data
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