The democracy of light-front components and the zero mode issue

Bailing Ma

Dr. Ji's group meeting

Mar. 17, 2023

Scalar meson $\rightarrow \gamma^{*} \gamma^{*}$ Transition Form Factor in 1+1-d scalar model: Manifestly covariant calculation

(D)

(C)

(S)

Figure: One-loop covariant Feynman Diagrams that contribute to the $S \rightarrow \gamma^{*} \gamma^{*}$ transition form factor

The total amplitude consists of these three Feynman diagrams, i.e., the direct (D), crossed (C), and the seagull (S) diagrams, where p is the momentum of the incident scalar meson, while q is the momentum of the emitted photon. As a result of momentum conservation, $q^{\prime}=p-q$ is the momentum of the final state photon.

From gauge invariance argument, we can know that the total amplitude $\Gamma^{\mu \nu}$ is of the form

$$
\begin{equation*}
\Gamma^{\mu \nu}=F\left(q^{2}, q^{\prime 2}\right)\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\nu}\right), \tag{1}
\end{equation*}
$$

which satisfies both

$$
\begin{equation*}
q_{\mu}\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\prime \mu} q^{\nu}\right)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{\nu}^{\prime}\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\nu}\right)=0 \tag{3}
\end{equation*}
$$

so that the form factor can be obtained by

$$
\begin{equation*}
F\left(q^{2}, q^{2}\right)=\frac{\Gamma^{\mu \nu}}{g^{\mu \nu} q \cdot q^{\prime}-q^{\prime \mu} q^{\nu}} \tag{4}
\end{equation*}
$$

The amplitude $\Gamma^{\mu \nu}$ is calculated as such, following the Feynman rules for the scalar field theory.

$$
\begin{align*}
\Gamma^{\mu \nu}= & \Gamma_{D}^{\mu \nu}+\Gamma_{C}^{\mu \nu}+\Gamma_{S}^{\mu \nu} \\
= & e^{2} g_{S} \int \frac{d^{2} k}{(2 \pi)^{2}}\left\{\frac{(2 p-2 k-q)^{\mu}(p-2 k-q)^{\nu}}{\left((p-k-q)^{2}-m^{2}\right)\left((p-k)^{2}-m^{2}\right)\left(k^{2}-m^{2}\right)}\right. \\
& +\frac{(q-2 k)^{\mu}(p-2 k+q)^{\nu}}{\left((p-k)^{2}-m^{2}\right)\left(k^{2}-m^{2}\right)\left((q-k)^{2}-m^{2}\right)} \\
& \left.+\frac{-2 g^{\mu \nu}}{\left((p-k)^{2}-m^{2}\right)\left(k^{2}-m^{2}\right)}\right\} \tag{5}
\end{align*}
$$

where the coupling constant of the simple scalar model g_{s} is fixed from the normalization condition. For simplicity, we take all the intermediate scalar particles' mass to be m and their charge to be e, but it can be easily generalized to unequal mass/charge cases. The initial scalar meson has mass M.

We finally obtain

$$
\begin{equation*}
F\left(q^{2}, q^{\prime 2}\right)=\frac{e^{2} g_{s}}{4 \pi} \int_{0}^{1} d x \int_{0}^{1-x} d y(1-2 y)\left(\frac{1}{\Delta_{1}^{2}}+\frac{1}{\Delta_{2}^{2}}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta_{1}=x(x-1) q^{2}+2 x(x+y-1) q \cdot q^{\prime}+(x+y)(x+y-1) q^{\prime 2}+m^{2}, \tag{7}\\
& \Delta_{2}=x(x-1) q^{\prime 2}+2 x(x+y-1) q \cdot q^{\prime}+(x+y)(x+y-1) q^{2}+m^{2} . \tag{8}
\end{align*}
$$

Doing the x and y integrations, we get the analytic formula for the transition form factor,
$F\left(q^{2}, q^{\prime 2}\right)=\frac{e^{2} \cdot \varepsilon_{d}}{4 \pi} \times$
$\frac{\left(2-\omega-\gamma^{\prime}-\gamma\right) \frac{\sqrt{\omega}}{\sqrt{12}-\omega} \tan ^{-1}\left(\frac{\sqrt{\omega}}{\sqrt{1-\omega}}\right)+\left(\gamma-\gamma^{\prime}-\omega\right) \frac{\sqrt{1-\gamma^{\prime}}}{\sqrt{\gamma^{\prime}}} \sin ^{-1}\left(\frac{\sqrt{\gamma^{\prime}}}{\sqrt{1-\gamma^{\prime}}}\right)+\left(\gamma^{\prime}-\gamma-\omega\right) \frac{\sqrt{1-\gamma}}{\sqrt{\gamma}} \tan ^{-1}\left(\frac{\sqrt{\gamma}}{\sqrt{1-\gamma}}\right)}{m^{*}\left[\omega \omega \gamma^{\prime} \gamma+\omega^{2}+\left(\gamma^{\prime}-\gamma\right)^{2}-2 \omega\left(\gamma^{\prime}+\gamma\right]\right.}$,
where $\gamma=\frac{q^{2}}{4 m^{2}}, \gamma^{\prime}=\frac{q^{\prime 2}}{4 m^{2}}$, and $\omega=\frac{M^{2}}{4 m^{2}}$.

Now, taking $m=0.25 \mathrm{GeV}, M=0.14 \mathrm{GeV}$, and normalizing the form factor so that $F\left(q^{2}=0, q^{\prime 2}=0\right)=1$ (thus fixing g_{s}), and taking the value of $q^{\prime 2}=-0.1 \mathrm{GeV}^{2}$, we show below the numerical results of the form factor as a function of q^{2}. The agreement of the lines with the dots show the agreement of our result with the Dispersion Relation (DR)

Scalar meson $\rightarrow \gamma^{*} \gamma^{*}$ Transition Form Factor in 1+1-d scalar model: LFTO calculation

(a) $\quad p-q\left(\gamma^{*}\right)$

(b)

(c)

Figure: (Take the direct diagram as an example). The covariant diagram (a) is sum of the two LF x^{+}-ordered diagrams (b) and (c).

If one assumes each individual LFTO diagram contribution is of the gauge invariant form, i.e. $\Gamma^{\mu \nu}=F\left(q^{2}, q^{2}\right)\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\nu}\right)$, one can obtain the LFTO contributions by calculating just the plus-plus current: $F_{(b)}=\frac{\Gamma_{(b)}^{++}}{g^{++} q \cdot q^{\prime}-q^{\prime+} q^{+}}, F_{(c)}=\frac{\Gamma_{(c)}^{++}}{g^{++} q \cdot q^{\prime}-q^{\prime+} q^{+}}$.

However, this way defined LFTO form factors (or GPDs, since they are essentially form factors with unintegrated x), changes with the component. (You never see this if you don't look at other components than the ++)

Taking $q^{\prime 2}=-1.0 \mathrm{GeV}^{2}$.

I'm missing the -- component because of difficulty of calculation. More on that later.

Spurious form factors

The most general way, is to write the LFTO diagrams as 4 form factors

$$
\Gamma_{i}^{\mu \nu}=f_{i}^{A}\left(q^{2}, q^{\prime 2}\right) A^{\mu \nu}+f_{i}^{B}\left(q^{2}, q^{\prime 2}\right) B^{\mu \nu}+f_{i}^{C}\left(q^{2}, q^{\prime 2}\right) C^{\mu \nu}+f_{i}^{D}\left(q^{2}, q^{\prime 2}\right) D^{\mu \nu}
$$

where $i=D(b), D(c), C(b), C(c)$, or S. Only $A^{\mu \nu}$ is gauge invariant, while $B^{\mu \nu}, C^{\mu \nu}$, and $D^{\mu \nu}$ are not. Of course the individual form factors must satisfy

$$
\begin{equation*}
\sum_{i} f_{i}^{B}\left(q^{2}, q^{\prime 2}\right)=\sum_{i} f_{i}^{C}\left(q^{2}, q^{\prime 2}\right)=\sum_{i} f_{i}^{D}\left(q^{2}, q^{\prime 2}\right)=0 \tag{10}
\end{equation*}
$$

(Now the component-dependence is completely in those forms).
The four forms are found to be

$$
\begin{aligned}
& A^{\mu \nu}=g^{\mu \nu} q \cdot q^{\prime}-q^{\prime \mu} q^{\nu} \\
& B^{\mu \nu}=q^{\mu} q^{\prime \nu} \\
& C^{\mu \nu}=q^{\mu}\left(q^{\nu}-\frac{q \cdot q^{\prime}}{q^{2}} q^{\prime \nu}\right) \\
& D^{\mu \nu}=\left(q^{\prime \mu}-\frac{q \cdot q^{\prime}}{q^{2}} q^{\mu}\right) q^{\prime \nu}
\end{aligned}
$$

where we select them so that each two out of the four are orthogonal.

So that we can obtain the individual form factors by

$$
\begin{gather*}
f_{i}^{A}\left(q^{2}, q^{\prime 2}\right)=\frac{A_{\mu \nu} \Gamma_{i}^{\mu \nu}}{A_{\mu \nu} A^{\mu \nu}}=\frac{A_{\mu \nu} \Gamma_{i}^{\mu \nu}}{q^{2} q^{\prime 2}} \tag{11}\\
f_{i}^{B}\left(q^{2}, q^{\prime 2}\right)=\frac{B_{\mu \nu} \Gamma_{i}^{\mu \nu}}{B_{\mu \nu} B^{\mu \nu}}=\frac{B_{\mu \nu} \Gamma_{i}^{\mu \nu}}{q^{2} q^{\prime 2}} \tag{12}\\
f_{i}^{C}\left(q^{2}, q^{\prime 2}\right)=\frac{C_{\mu \nu} \Gamma_{i}^{\mu \nu}}{C_{\mu \nu} C^{\mu \nu}}=\frac{C_{\mu \nu} \Gamma_{i}^{\mu \nu}}{q^{2}\left(q^{2}-\frac{\left(q \cdot q^{\prime}\right)^{2}}{q^{\prime 2}}\right)} \tag{13}\\
f_{i}^{D}\left(q^{2}, q^{\prime 2}\right)=\frac{D_{\mu \nu} \Gamma_{i}^{\mu \nu}}{D_{\mu \nu} D^{\mu \nu}}=\frac{D_{\mu \nu} \Gamma_{i}^{\mu \nu}}{q^{\prime 2}\left(q^{\prime 2}-\frac{\left(q \cdot q^{\prime}\right)^{2}}{q^{2}}\right)} \tag{14}
\end{gather*}
$$

For $i=S$, we then have

$$
\begin{gather*}
f_{S}^{A}=f_{S}^{B}=\frac{q \cdot q^{\prime}}{q^{2} q^{\prime 2}} \Gamma_{S}^{+-} \tag{15}\\
f_{S}^{C}=\frac{1}{q^{2}} \Gamma_{S}^{+-} \tag{16}\\
f_{S}^{D}=\frac{1}{q^{\prime 2}} \Gamma_{S}^{+-} \tag{17}
\end{gather*}
$$

where

$$
\begin{equation*}
\Gamma_{S}^{+-}=\frac{e^{2} g_{s}}{4 \pi} \int_{0}^{1} d x \frac{2}{(1-x) \times\left(\frac{m^{2}}{1-x}+\frac{m^{2}}{x}-M^{2}\right)}=\Gamma_{S}^{-+} \tag{18}
\end{equation*}
$$

Form factor A -- real part

Form factor A -- imaginary part

Going to do this for the separation into Valence, Non-Valence, and Seagull, but need the "minus-minus" component.

The light－front zero－mode issue

The two-point function in the picture below is responsible for the axial anomaly in $1+1$-d QED.

Figure: Feynman diagram for the photon self-energy at one-loop order.

The two vertices being one axial one vector can be obtained from the one with both vertices being vector

$$
\begin{equation*}
T_{5}^{\mu \nu}=\varepsilon^{\nu \lambda} T_{\lambda}^{\mu} \tag{19}
\end{equation*}
$$

So to get $T_{5}^{\mu \nu}$, it is enough to compute $T^{\mu \nu}$, the vacuum polarization tensor.
$L_{\text {manifestation of the zero-mode issue in the two-point function in 1+1-d QED }}$

Covariant calculation of the two-point function in 1+1-d QED with dimensional regularization

$$
\begin{aligned}
T^{\mu \nu}(q)= & i e^{2} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{\operatorname{Tr}\left[\gamma^{\mu}(k+m) \gamma^{\nu}(k-q+m)\right]}{\left[k^{2}-m^{2}\right]\left[(k-q)^{2}-m^{2}\right]} \\
= & e^{2} \int_{0}^{1} d x \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{\left(k_{\alpha} k_{\beta}-k_{\alpha} q_{\beta}\right) \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]+m^{2} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]}{\left[k^{2}+2(x-1) k \cdot q-(x-1) q^{2}-m^{2}\right]^{2}} \\
= & i e^{2} \int_{0}^{1} d x\left(\frac{i(-\pi)}{(2 \pi)^{2}\left(-(x-1) q^{2}-m^{2}-(x-1)^{2} q^{2}\right)}\right) \\
& \times\left((x-1)^{2} q_{\alpha} q_{\beta}+g_{\alpha \beta} \frac{-(x-1) q^{2}-m^{2}-(x-1)^{2} q^{2}}{2-n}\right) \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right] \\
& +i e^{2} \int_{0}^{1} d x \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{m^{2} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]-k_{\alpha} q_{\beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]}{\left.2(x-1) k \cdot q-(x-1) q^{2}-m^{2}\right]^{2}}
\end{aligned}
$$

The key is to take the space-time dimension $n \rightarrow 2$ after the momentum integration

$$
\begin{align*}
T^{\mu \nu}(q)= & -\frac{e^{2}}{4 \pi} \int_{0}^{1} d x \frac{(x-1)^{2} q_{\alpha} q_{\beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]}{x(x-1) q^{2}+m^{2}} \\
& -\frac{e^{2}}{4 \pi} \int_{0}^{1} d x \frac{m^{2} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]+(x-1) q_{\alpha} q_{\beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]}{x(x-1) q^{2}+m^{2}} \\
& +\frac{e^{2}}{4 \pi} \int_{0}^{1} d x \frac{1}{2-n} g_{\alpha \beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right] . \tag{20}
\end{align*}
$$

According to the n-dimensional formula

$$
\begin{equation*}
g_{\alpha \beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]=2(2-n) g^{\mu \nu} \tag{21}
\end{equation*}
$$

one gets

$$
\begin{equation*}
T^{\mu \nu}(q)=-\frac{e^{2}}{2 \pi} \int_{0}^{1} d x \frac{x(x-1)\left(2 q^{\mu} q^{\nu}-g^{\mu \nu} q^{2}\right)+g^{\mu \nu} m^{2}}{x(x-1) q^{2}+m^{2}}+\frac{e^{2}}{2 \pi} g^{\mu \nu} \tag{22}
\end{equation*}
$$

which satisfies gauge invariance

$$
\begin{equation*}
T^{\mu \nu}(q)=T\left(q^{2}\right)\left(\frac{q^{\mu} q^{\nu}}{q^{2}}-g^{\mu \nu}\right) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
T\left(q^{2}\right)=-\frac{e^{2}}{\pi}\left(1-\frac{m^{2} / q^{2}}{\sqrt{1 / 4-m^{2} / q^{2}}} \ln \left(\frac{1-\frac{1}{2 \sqrt{1 / 4-m^{2} / q^{2}}}}{1+\frac{1}{2 \sqrt{1 / 4-m^{2} / q^{2}}}}\right)\right) \tag{24}
\end{equation*}
$$

assuming $q^{2}>4 m^{2}$.

There are other regularization methods to get this.

Axial Anomaly through Analytic Regularization

7allay Partides
and Fields
L. A. Manzoni aud B. M. Pimentes

Instituto de Física Tórica
Lniversidade Eatadual Paulista
Kua Pamplona, 145
$01405-900$ - Sio Paulo, S.P.
Brazil
and
J. L. Tomazelli

Departanentu de Fixicas e Quimich - Faculdede de Engenharia Universidade Estadual Paulista - Campus de Guaratinguetá

Av. Dr. Ariberto Perciva da Gunha, 333
12500-000-Cuarntinguetá, S.P
Braxil
ispersion relation approach to the anomaly in 2 dimensions*
C. Adam. R.A. Bertmann, P. Hoker

Rowinex |3 April 39%

Two-dimensional Chiral Anomaly in Differential Regularization

Deperiment of Ctosices Unfiereste of W.F. Chen

902199 v6 4 Jun 1999

Abstract

 zation. It is shown that the amomaly cenerges naturally in tat veator and
 vector gauge symmetry ran be axisived by an appropriste chuiwe of the mase seslse without strtroducing tbe seagull term. We haste amalyzad the reason why such a univernal reault carl be obtanind in differeminal regularization.

PACS: $11.10 . \mathrm{Kk} ; 11.15 . \mathrm{Cl}_{1}$
Keywords: Two-dimensenal chisal anomaly: Differential regularization; arbsGacy local term: Ward identity.

The democracy of light-front components and the zero mode issue
\square The light-front zero-mode issue
-manifestation of the zero-mode issue in the two-point function in 1+1-d QED

. PhysRevD.53.5815.pdf

Page 1 of 6

Light-front view of the axial anomaly

Chueng-Ryong Ji ${ }^{1,3}$ and Soo-Jong Rey ${ }^{2}$
${ }^{I}$ Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
${ }^{2}$ Department of Physics \& Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea
${ }^{3}$ Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
(Received 7 September 1995)

Abstract

Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel's interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. [S0556-2821(96)041100]

PACS number(s): $11.40 . \mathrm{Ha}, 11.10 . \mathrm{Ef}, 11.10 . \mathrm{Kk}, 11.30 . \mathrm{Rd}$

Recently the idea of using light-front quantization [1], which has been applied successfully in the context of current algebra [2] and the parton model [3] in the past, was revived as a promising method for solving QCD $[4,5]$. While the hope is partly based on the observation that the perturbative vacuum becomes extremely simple, it has been a challenge to understand nontrivial vacuum states such as chiral symmetry breaking and θ-vacuum structures. As these aspects are essential to low-energy hadron physics, it is important to understand how these aspects come about in light-front quantized QCD. In simpler models, this issue has been studied only very recently [6], and it has been found that the $k^{+}=0$ zero modes are responsible for nontrivial vacuum phenomena.

In this paper, we address another particular aspect of the nontrivial vacuum structure: the axial anomaly [7]. It is well known that the regularization procedure in quantum field

There have been previous studies of the axial anomaly on the light front from various approaches. Bergknoff [9] has studied the Schwinger model on the light front. He has shown that the particle mass of the Schwinger boson results from the axial anomaly so that the nonconservation of the axial vector current is equivalent to the massive KleinGordon equation in the bosonized theory. A more recent but similar result was obtained by Heinzl et al. [10]. Both works [9,10] have taken the light-front limit as the first step, subsequently performed the quantization on the light-front hypersurface (which, in $1+1$ dimensions, is purely lightlike) and finally calculated physical observables. As the light-front limit is taken already, however, this approach necessarily involves light-front constraint equations. A proper and careful treatment of these constraint equations is essential to obtain the corructresult for Fiyical ob=ervables. Farious at $\Omega \curvearrowright$

- The light-front zero-mode issue

$\left\llcorner_{\text {manifestation of the zero-mode issue in the two-point function in 1+1-d QED }}\right.$
With the light-front calculation still under investigation, and all the physics about axial anomaly very interesting by itself, today I just want to focus on the calculation techniques, and show the way to get the minus-minus component correct in this two-point function calculation. Let

$$
T^{\mu \nu}(q)=I_{(1)}^{\mu \nu}(q)+I_{(2)}^{\mu \nu}(q)+I_{(3)}^{\mu \nu}(q)
$$

where

$$
\begin{aligned}
& I_{(1)}^{\mu \nu}(q)=\frac{i e^{2}}{4 \pi^{2}} \int d k^{+} \int d k^{-} \frac{k_{\alpha} k_{\beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} ; \\
& I_{(2)}^{\mu \nu}(q)=-\frac{i e^{2}}{4 \pi^{2}} \int d k^{+} \int d k^{-} \frac{k_{\alpha} q_{\beta} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \gamma^{\beta}\right]}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} ;
\end{aligned}
$$

and

$$
I_{(3)}^{\mu \nu}(q)=\frac{i e^{2}}{4 \pi^{2}} \int d k^{+} \int d k^{-} \frac{m^{2} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} .
$$

We see that $I_{(1)}^{\mu \nu}(q)$ is logarithmically divergent while $I_{(2)}^{\mu \nu}(q)$ and $I_{(3)}^{\mu \nu}(q)$ are not divergent. The simplest term, $I_{(3)}^{\mu \nu}(q)$, can be calculated easily:

$$
\begin{aligned}
l_{(3)}^{\mu \nu}(q) & =\frac{i e^{2}}{4 \pi^{2}} 2 g^{\mu \nu} m^{2} \int d k^{+} \int d k^{-} \frac{1}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} \\
& =\frac{i e^{2}}{4 \pi^{2}} 2 g^{\mu \nu} m^{2}(-2 \pi i) q^{+} \int_{0}^{1} d x \frac{1}{2 k^{+} 2(k-q)^{+}\left(\frac{m^{2}}{2 k^{+}}-\frac{m^{2}}{2(k-q)^{+}}-\frac{q^{2}}{2 q^{+}}\right)} \\
& =g^{\mu \nu} \frac{e^{2} m^{2}}{2 \pi} \int_{0}^{1} d x \frac{1}{x(x-1)\left(\frac{m^{2}}{x}-\frac{m^{2}}{x-1}-q^{2}\right)} \\
& =g^{\mu \nu} \frac{e^{2} m^{2}}{2 \pi} \int_{0}^{1} d x \frac{-1}{x(x-1) q^{2}+m^{2}} .
\end{aligned}
$$

For "--" component, this term is zero.
$L_{\text {manifestation of the zero-mode issue in the two-point function in } 1+1-\mathrm{d} \text { QED }}$
There is only one LFTO diagram:

$$
\rightarrow x^{+}
$$

$$
\begin{aligned}
& q^{+}>0 \\
& k^{+}>0 \\
& \& q^{+}-k^{+}>0
\end{aligned}
$$

$$
\otimes \frac{m^{2}-\dot{\varepsilon} \varepsilon}{2\left(k^{p}-q^{+}\right)}+q^{-}
$$

-The light-front zero-mode issue

L manifestation of the zero-mode issue in the two-point function in 1+1-d QED
Now we turn to $I_{(2)}^{\mu \nu}(q)$. We will focus on the "--" component, as other components can be easily computed without any trouble.

$$
\begin{aligned}
& I_{(2)}^{\mu \nu}(q)=-\frac{i e^{2}}{2 \pi^{2}} \int d k^{+} \int d k^{-} \frac{k^{\mu} q^{\nu}-g^{\mu \nu} k \cdot q+q^{\mu} k^{\nu}}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} . \\
& I_{(2)}^{--}(q)=-\frac{i e^{2}}{2 \pi^{2}} \int d k^{+} \int d k^{-} \frac{2 k^{-} q^{-}}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} .
\end{aligned}
$$

PHYSICAL REVIEW D 72, 076005 (2005)

Restoring the equivalence between the light-front and manifestly covariant formalisms

Bernard L. G. Bakker, ${ }^{1}$ Martin A. DeWitt, ${ }^{2}$ Chueng-Ryong Ji, ${ }^{2}$ and Yuriy Mishchenko ${ }^{3}$
${ }^{1}$ Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
${ }^{2}$ Department of Physics, Box 8202, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
${ }^{3}$ Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA (Received 7 September 2005; published 21 October 2005)

We discuss a treacherous point in light-front dynamics (LFD) which should be taken into account to restore complete equivalence with the manifestly covariant formalism. We present examples that require an inclusion of the arc contribution in the light-front energy contour integration in order to achieve the equivalence between the LFD result and the manifestly covariant result.

Here, because of equal mass in the two propagators, taking care of the arc contribution is enough to obtain the correct answer.

$$
\begin{align*}
I_{(2)}^{--}(q) & =-\frac{i e^{2}}{\pi^{2}} q^{-} \int d k^{+} \int d k^{-} \frac{k^{-}}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} \\
& =-\frac{i e^{2}}{\pi^{2}} q^{-}(-2 \pi i) q^{+} \int_{0}^{1} d x \frac{\frac{m^{2}}{2 k^{+}}}{2 k^{+} 2(k-q)^{+}\left(\frac{m^{2}}{2 k^{+}}-\frac{m^{2}}{2(k-q)^{+}}-\frac{q^{2}}{2 q^{+}}\right)} \\
& +\frac{i e^{2}}{\pi^{2}} q^{-} \int d k^{+} \lim _{R \rightarrow \infty} \int_{0}^{-\pi} i R e^{i \theta} d \theta \frac{R e^{i \theta}}{2 k^{+} 2(k-q)^{+}\left(R e^{i \theta}\right)^{2}} \\
& =\frac{e^{2}}{\pi} q^{-} q^{-} \frac{1}{q^{2}} \int_{0}^{1} d x\left\{\frac{m^{2}}{x\left[x(x-1) q^{2}+m^{2}\right]}+\frac{1}{2 x(x-1)}\right\} . \tag{25}
\end{align*}
$$

In which

$$
\begin{equation*}
\frac{m^{2}}{x\left[x(x-1) q^{2}+m^{2}\right]}=\frac{(1-x) q^{2}}{x(x-1) q^{2}+m^{2}}+\frac{1}{x} \tag{26}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{0}^{1} d x \frac{1}{2 x(x-1)} \\
= & -\frac{1}{2}\left(\int_{0}^{1} d x \frac{1}{x}+\int_{0}^{1} d x \frac{1}{1-x}\right) \\
= & -\frac{1}{2}\left(\int_{0}^{1} d x \frac{1}{x}+\int_{0}^{1} d x \frac{1}{x}\right) \\
= & -\int_{0}^{1} d x \frac{1}{x} \tag{27}
\end{align*}
$$

Thus, the answer is

$$
\begin{align*}
I_{(2)}^{--}(q) & =\frac{e^{2}}{\pi} q^{-} q^{-} \frac{1}{q^{2}} \int_{0}^{1} d x\left\{\frac{(1-x) q^{2}}{x(x-1) q^{2}+m^{2}}+\frac{1}{x}-\frac{1}{x}\right\} \\
& =\frac{e^{2}}{\pi} q^{-} q^{-} \int_{0}^{1} d x \frac{(1-x)}{x(x-1) q^{2}+m^{2}} \tag{28}
\end{align*}
$$

$\left\llcorner_{\text {manifestation of the zero-mode issue in the two-point function in 1+1-d QED }}\right.$
Now, let us tackle the difficult, divergent term, $I_{(1)}^{\mu \nu}(q)$.

$$
\begin{aligned}
I_{(1)}^{\mu \nu}(q) & =\frac{i e^{2}}{2 \pi^{2}} \int d k^{+} \int d k^{-} \frac{2 k^{\mu} k^{\nu}-g^{\mu \nu} k^{2}}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} . \\
I_{(1)}^{--}(q) & =\frac{i e^{2}}{2 \pi^{2}} \int d k^{+} \int d k^{-} \frac{2 k^{-} k^{-}}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} \\
& =\frac{i e^{2}}{\pi^{2}} \int d k^{+} \int d k^{-} \frac{\left(k^{-}\right)^{2}}{D_{1} D_{2}},
\end{aligned}
$$

where

$$
\begin{gathered}
D_{1}=2 k^{+} k^{-}-m^{2}+i \epsilon, \\
D_{2}=2(k-q)^{+}(k-q)^{-}-m^{2}+i \epsilon
\end{gathered}
$$

We will utilize the "asymptotic method" discussed in the flying pole paper.
When $k^{-} \rightarrow \infty$ and $k^{+} \rightarrow 0$,
$V_{a s y 1}=\frac{i e^{2}}{\pi^{2}} \int d k^{+} \int d k^{-} \frac{\left(k^{-}\right)^{2}}{D_{1} 2\left(-q^{+}\right) k^{-}}=-\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+} \int d k^{-} \frac{k^{-}}{D_{1}}$.
When $k^{-} \rightarrow \infty$ and $k^{+} \rightarrow q^{+}$,

$$
V_{a s y 2}=\frac{i e^{2}}{\pi^{2}} \int d k^{+} \int d k^{-} \frac{\left(k^{-}\right)^{2}}{D_{2} 2 q^{+} k^{-}}=\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+} \int d k^{-} \frac{k^{-}}{D_{2}} .
$$

$L_{\text {manifestation of the zero-mode issue in the two-point function in 1+1-d QED }}$
This is the so-called "catching the flying pole"
$\rightarrow x^{+}$

$\& q^{+}-k^{+}>0 q^{+}-k^{+}=0$
$L_{\text {manifestation of the zero-mode issue in the two-point function in 1+1-d QED }}$

We subtract the two asymptotic contributions from $I_{(1)}^{--}(q)$ and then add them back.

$$
\begin{align*}
I_{(1)}^{--}(q) & =\left[I_{(1)}^{--}(q)-V_{a s y 1}-V_{\text {asy } 2}\right]+V_{\text {asy } 1}+V_{\text {asy } 2} \\
& =\frac{i e^{2}}{\pi^{2}} \frac{1}{2 q^{+}} \int d k^{+} \int d k^{-} k^{-} \frac{2 k^{-} q^{+}+D_{2}-D_{1}}{D_{1} D_{2}}+V_{\text {asy } 1}+V_{\text {asy } 2} \\
& =\frac{i e^{2}}{\pi^{2}} \frac{1}{2 q^{+}} \int d k^{+} \int d k^{-} k^{-} \frac{2 q^{-}\left(q^{+}-k^{+}\right)}{D_{1} D_{2}}+V_{a s y 1}+V_{a s y 2} \\
& =\frac{i e^{2}}{\pi^{2}} \int d k^{+} \int d k^{-} \frac{k^{-} q^{-}\left(1-k^{+} / q^{+}\right)}{D_{1} D_{2}}+V_{a s y 1}+V_{a s y 2} . \tag{29}
\end{align*}
$$

We notice now in terms of the k^{-}variable, the power has reduced from $\int d k^{-} \frac{\left(k^{-}\right)^{2}}{D_{1} D_{2}}$ to $\int d k^{-} \frac{k^{-}}{D_{1} D_{2}}$, due to the cancelation with the $V_{\text {asy }}$'s. Now this k^{-} integration, we've done before for $I_{(2)}^{--}(q)$.
$L_{\text {manifestation of the zero-mode issue in the two-point function in 1+1-d QED }}$

$$
\begin{aligned}
& I_{(1)}^{--}(q) \\
= & \frac{i e^{2}}{\pi^{2}} \int d k^{+} q^{-}\left(1-k^{+} / q^{+}\right)\left[(-2 \pi i) \frac{\frac{m^{2}}{2 k^{+}}}{2 k^{+} 2(k-q)^{+}\left(\frac{m^{2}}{2 k^{+}}-\frac{m^{2}}{2(k-q)^{+}}-\frac{q^{2}}{2 q^{+}}\right)}\right. \\
& \left.-\lim _{R \rightarrow \infty} \int_{0}^{-\pi} i R e^{i \theta} d \theta \frac{R e^{i \theta}}{2 k^{+} 2(k-q)^{+}\left(R e^{i \theta}\right)^{2}}\right]+V_{a s y 1}+V_{a s y 2} \\
= & -\frac{e^{2}}{2 \pi} \frac{q^{-}}{q^{+}} \int_{0}^{1} d x(1-x)\left\{\frac{m^{2}}{x\left[x(x-1) q^{2}+m^{2}\right]}+\frac{1}{2 x(x-1)}\right\}+V_{a s y 1}+V_{a s y 2} \\
= & -\frac{e^{2}}{2 \pi} \frac{2 q^{-} q^{-}}{q^{2}} \int_{0}^{1} d x(1-x)\left\{\frac{(1-x) q^{2}}{x(x-1) q^{2}+m^{2}}+\frac{1}{x}-\frac{1}{x}\right\}+V_{a s y 1}+V_{a s y 2} \\
= & -\frac{e^{2}}{\pi} q^{-} q^{-} \int_{0}^{1} d x \frac{(1-x)^{2}}{x(x-1) q^{2}+m^{2}}+V_{a s y 1}+V_{a s y 2}
\end{aligned}
$$

Now what's left to do is to evaluate the two $V_{a s y}$'s. There are a lot of methods to evaluate them in the flying pole paper, but for simplicity I will for now evaluate them as follows.

$$
\begin{align*}
\frac{\partial}{\partial m^{2}} V_{a s y 1} & =-\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+} \int_{-R}^{R} d k^{-} \frac{k^{-}}{D_{1}^{2}} \\
& =-\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+}\left[\frac{-\frac{m^{2}}{2 k^{+} k^{-}-m^{2}}+\ln \left(m^{2}-2 k^{+} k^{-}\right)}{4\left(k^{+}\right)^{2}}\right]_{k^{-}=-R}^{R} \\
& =-\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+} \frac{i \pi}{4\left(k^{+}\right)^{2}} \tag{30}
\end{align*}
$$

where $k^{+} \rightarrow 0$.

And

$$
\begin{align*}
& \frac{\partial}{\partial m^{2}} V_{a s y 2} \\
& =\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+} \int_{-R}^{R} d k^{-} \frac{k^{-}}{D_{2}^{2}} \\
& =\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+}\left[\frac{-\frac{2\left(k^{+}-q^{+}\right) q^{-}+m^{2}}{2\left(k^{+}-q^{+}\right)\left(k^{-}-q^{-}\right)-m^{2}}+\ln \left(m^{2}-2\left(k^{+}-q^{+}\right)\left(k^{-}-q^{-}\right)\right)}{4\left(k^{+}-q^{+}\right)^{2}}\right]_{k-=-R}^{R} \\
& =\frac{i e^{2}}{2 \pi^{2} q^{+}} \int d k^{+} \frac{i \pi}{4\left(k^{+}-q^{+}\right)^{2}} \tag{31}
\end{align*}
$$

where $k^{+}-q^{+} \rightarrow 0$.
So actually,

$$
\begin{equation*}
V_{a s y 1}+V_{a s y 2}=0 \tag{32}
\end{equation*}
$$

$L_{\text {manifestation of the }}$ zero-mode issue in the two-point function in 1+1-d QED

Thus, we obtain

$$
I_{(1)}^{--}(q)=-\frac{e^{2}}{\pi} q^{-} q^{-} \int_{0}^{1} d x \frac{(1-x)^{2}}{x(x-1) q^{2}+m^{2}}
$$

Recall that

$$
I_{(2)}^{--}(q)=\frac{e^{2}}{\pi} q^{-} q^{-} \int_{0}^{1} d x \frac{(1-x)}{x(x-1) q^{2}+m^{2}}
$$

So,

$$
T^{--}(q)=I_{(1)}^{--}(q)+I_{(2)}^{--}(q)=-\frac{e^{2}}{2 \pi}\left(2 q^{-} q^{-}\right) \int_{0}^{1} d x \frac{x(x-1)}{x(x-1) q^{2}+m^{2}}
$$

In exact agreement with the covariant calculation.

If one ignores what's discussed in the flying pole paper, and calculates the -- component naively by the pole integration method,

$$
\begin{aligned}
T^{--}(q) & =\frac{i e^{2}}{2 \pi^{2}} \int d k^{+} \int d k^{-} \frac{-2 k^{-} q^{-}+2 k^{-} k^{-}}{\left[2 k^{+} k^{-}-m^{2}\right]\left[2(k-q)^{+}(k-q)^{-}-m^{2}\right]} \\
& =\frac{i e^{2}}{2 \pi^{2}} \int d k^{+}(-2 \pi i) \frac{-\frac{m^{2}}{k^{+}} q^{-}+2\left(\frac{m^{2}}{2 k^{+}}\right)^{2}}{2 k^{+} 2(k-q)^{+}\left(\frac{m^{2}}{2 k^{+}}-\frac{m^{2}}{2(k-q)^{+}}-\frac{q^{2}}{2 q^{+}}\right)} \\
& =-\frac{e^{2}}{2 \pi}\left(2 q^{-} q^{-}\right) \int_{0}^{1} d x \frac{\frac{m^{2}}{x q^{2}}\left(\frac{m^{2}}{x q^{2}}-1\right)}{x(x-1) q^{2}+m^{2}} .
\end{aligned}
$$

In apparent disagreement with the covariant calculation.
\square manifestation of the zero-mode issue in the transition form factor in 1+1-d scalar model
The same kind of trouble comes in for the "--" component in the transition form factor calculation, where naive pole integration gives

$$
\begin{aligned}
\Gamma_{D(b)}^{--} & =\frac{e^{2} g_{s}}{4 \pi p^{+} p^{+}} \int_{0}^{1-\alpha} d x\left(\frac{M^{2}}{2}+\frac{q^{\prime 2}}{2(1-\alpha)}-\frac{m^{2}}{x}\right)\left(\frac{q^{\prime 2}}{2(1-\alpha)}-\frac{m^{2}}{x}\right) \\
\cdot & {\left[(1-x-\alpha)(1-x) \times\left(\frac{m^{2}}{x}+\frac{m^{2}}{1-x-\alpha}-\frac{q^{\prime 2}}{1-\alpha}\right)\left(\frac{m^{2}}{x}+\frac{m^{2}}{1-x}-M^{2}\right)\right]^{-1} }
\end{aligned}
$$

and

$$
\begin{aligned}
\Gamma_{D(c)}^{--} & =\frac{e^{2} g_{s}}{4 \pi p^{+} p^{+}} \int_{1-\alpha}^{1} d x\left(\frac{q^{\prime 2}}{2(1-\alpha)}-\frac{M^{2}}{2}+\frac{m^{2}}{1-x}\right)\left(\frac{q^{\prime 2}}{2(1-\alpha)}-M^{2}+\frac{m^{2}}{1-x}\right) \\
& \cdot\left[(1-x-\alpha)(1-x) \times\left(\frac{m^{2}}{1-x-\alpha}-\frac{m^{2}}{1-x}+M^{2}-\frac{q^{\prime 2}}{1-\alpha}\right)\left(\frac{m^{2}}{1-x}+\frac{m^{2}}{x}-M^{2}\right)\right]^{-1}
\end{aligned}
$$

Here, the $\int d x$ integrations could not be done simply using Mathematica like before, due to the end point singularities at $x=0$ and $x=1$, for $\Gamma_{D(b)}^{--}$and $\Gamma_{D(c)}^{--}$, respectively.

- The light-front zero-mode issue

Simply cutting out the singularities results in disagreement with the manifestly covariant calculation.

The democracy of light-front components and the zero mode issue
ᄂ The light-front zero-mode issue

Without getting into details, we tried many other things, including
Way out of Γ^{--}difficulty
Jan. 30, 2023
As $\Gamma_{D}^{\mu \nu}$ and $\Gamma_{C}^{\mu \nu}$ are inteschangiable by the change of variables $k \leftrightarrow p-k$, let me illustrate here only $\Gamma_{D}^{\mu \nu}$ for simplicity.
The integrand of $\Gamma_{D}^{\mu \nu}$ can be identified as

$$
\frac{(2 p-2 k-q)^{\mu}(p-2 k-q)^{\nu}}{D_{p-q} D_{p-k} D_{k}} \equiv \frac{N^{\mu \nu}}{D_{p-k-q} D_{p-k} D_{k}}
$$

where

$$
\begin{aligned}
& D_{p-k \cdot q}=(p-k-q)^{2}-m^{2}+i \epsilon \\
& D_{p-k}=(p-k)^{2}-m^{2}+i \epsilon \\
& D_{k}=k^{2}-m^{2}+i \epsilon .
\end{aligned}
$$

The key idea is to use the following equality $q_{\mu} N^{\mu \nu}=D_{p-k}-D_{p-k-q}$ to reduce the number of jamomistos, while $\frac{k^{-}}{D_{1} D_{2}}$ type computation was already done is PRO 72, 0760005 (coss) and N^{+-}computation was also done previously.

$$
\frac{N^{--}}{D_{p k-q} D_{p-k} D_{k}}=\frac{1}{D_{p-k-q} D_{k}}-\frac{1}{D_{p-k} D_{k}}-\frac{q^{-}}{q^{+}} \frac{N^{+-}}{D_{p k} D_{p-k} D_{k}}
$$

Now because two denominators doesn't have different time-orderings, separating them into two different time-ordered contributions by hand will result in weird things.

L manifestation of the zero-mode issue in the transition form factor in 1+1-d scalar model

And the total does not exactly agree, either.

The democracy of light－front components and the zero mode issue
－The light－front zero－mode issue
－manifestation of the zero－mode issue in the transition form factor in 1＋1－d scalar model

```
In[34]: Table[{(\frac{qpsqval (qpsqval -(1-\alpha) M}{~})
    ivqsq, -2, 2, 0.11}]
Out[34]={{0.131327,0.132588}}, {0.12023, 0.121487},{0.109401, 0.110654}, {0.0988565, 0.100104}, {0.0886147, 0.8898568], {0.0786958, 0.0799314},
    {0.069123, 0.070351}, (0.0599231, 0.0611423}, {0.0511273, 0.0523358}, {0.0427723, 0.0439679}, (0.0349018, 0.0360816), {0.0275692, 0.0287288},
    {0.0208403, 0.0219734}, {0.0147987, 0.0158957}, (0.00955368, 0.0105985), (0.00525288, 0.00621612}, (0.00210402, 0.00292474}, (0.000384404, 0.000929232),
    {9.29468\times1\mp@subsup{0}{}{-6},0.000226786}, (-0.0000120844,0.0000851672}, {-0.0000154924,0.0000405009}, {-0.0000151337,0.0000218962},{-6.64996\times1\mp@subsup{0}{}{-6},0.0000199425},
    {-3.06409\times1\mp@subsup{0}{}{-6},0.0000171008},{-1.36938\times1\mp@subsup{0}{}{-6},0.0000145246},{-5.06108\times1\mp@subsup{0}{}{-7},0.0000123897},{-4.4858\times1\mp@subsup{0}{}{-8},0.0000106568},
    {2.07802\times1\mp@subsup{0}{}{-7},9.25034\times1\mp@subsup{0}{}{-6}},{3.46376\times1\mp@subsup{0}{}{-7},8.10096\times1\mp@subsup{0}{}{-6}},{4.20073\times1\mp@subsup{0}{}{-7},7.15287\times1\mp@subsup{0}{}{-6}},{4.55836\times1\mp@subsup{0}{}{-7},6.36313\times1\mp@subsup{0}{}{-6}},{4.6903\times1\mp@subsup{0}{}{-7},5.69895\times1\mp@subsup{0}{}{-6}},
    {4.68699\times1\mp@subsup{0}{}{-7},5.13533\times1\mp@subsup{0}{}{-6}},{4.60305\times1\mp@subsup{0}{}{-7},4.65303\times1\mp@subsup{0}{}{-6}},{4.47214\times1\mp@subsup{0}{}{-7},4.23711\times1\mp@subsup{0}{}{-6}},{4.31527\times1\mp@subsup{0}{}{-7},3.87591\times1\mp@subsup{0}{}{-6}},{4.14564\times1\mp@subsup{0}{}{-7},3.56017\times1\mp@subsup{0}{}{-6}}}
In[35]:= Table[{(\frac{qpsqval (qpsqval -(1-\alpha) M}{(2)}
    {vasq, -2, 2, 0.11}]
Out[3]= {{0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}, {0., 0.}, (0., 0.}, (0., 0.}, {0., 0.}, {0., 0.},
```



```
    {-0.0000121831, -0.0000121831}, (-0.000011436,-0.000011436}, {-9.09137\times1\mp@subsup{0}{}{-6},-9.09137\times1\mp@subsup{0}{}{-6}},{-7.16059\times1\mp@subsup{0}{}{-6},-7.16059\times1\mp@subsup{0}{}{-6}},
    {-5.71702\times1\mp@subsup{0}{}{-6},-5.71702\times1\mp@subsup{0}{}{-6}},{-4.64417\times1\mp@subsup{0}{}{-6},-4.64417\times1\mp@subsup{0}{}{-6}},{-3.83603\times1\mp@subsup{0}{}{-6},-3.83603\times1\mp@subsup{0}{}{-6}},{-3.21636\times1\mp@subsup{0}{}{-6},-3.21636\times1\mp@subsup{0}{}{-6}},
    {-2.73264\times1\mp@subsup{0}{}{-6},-2.73264\times1\mp@subsup{0}{}{-6}},{-2.34871\times1\mp@subsup{0}{}{-6},-2.34871\times1\mp@subsup{0}{}{-6}},{-2.03938\times1\mp@subsup{0}{}{-6},-2.03938\times1\mp@subsup{0}{}{-6}},{-1.78675\times1\mp@subsup{0}{}{-6},-1.78675\times1\mp@subsup{0}{}{-6}},
    {-1.57791\times1\mp@subsup{0}{}{-6},-1.57791\times1\mp@subsup{0}{}{-6}},{-1.4034\times1\mp@subsup{0}{}{-6},-1.4034\times1\mp@subsup{0}{}{-6}},{-1.25614\times1\mp@subsup{0}{}{-6},-1.25614\times1\mp@subsup{0}{}{-6}},{-1.13077\times1\mp@subsup{0}{}{-6},-1.13077\times1\mp@subsup{0}{}{-6}}}
```

\square manifestation of the zero-mode issue in the transition form factor in $1+1$-d scalar model
Then we tried to take into account the asymptotic contributions without much success.

The democracy of light-front components and the zero mode issue
L The light-front zero-mode issue
$L_{\text {manifestation of the }}$ zero-mode issue in the transition form factor in $1+1$-d scalar model
Finally we tried the following idea.

$$
\begin{aligned}
& P_{D}^{\mu \nu}=i e^{2} g_{s} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{(2 p-2 k-q)^{\mu}(p-2 k-q)^{\nu}}{D_{1} D_{2} D_{3}} \\
& \frac{1}{D_{1} D_{2} D_{3}} \stackrel{F \cdot P_{1}}{=} \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{2}{D_{C o v}^{3}} \\
& \text { Where } D_{\text {Cv }}=[k-(x+y) p+y q]^{2}-[(x+y) p+y q]^{2}-m^{2}+x p^{2}+y(p-q)^{2}
\end{aligned}
$$

Then one could shift momentum to $l=k-(x+y) p+y q$.
For T_{D}^{--}calculation, only problematic part is $\int d^{2} k \frac{\left(k^{-}\right)^{2}}{D_{1} D_{2} D_{3}}$. Let's separate it out.

The democracy of light-front components and the zero mode issue
ᄂ The light-front zero-mode issue
L -manifestation of the zero-mode issue in the transition form factor in $1+1-\mathrm{d}$ scalar model

$$
\begin{aligned}
T_{D}^{\mu \nu}= & i^{2} g_{s} \int \frac{d^{2} k}{(2 \pi)^{2}}
\end{aligned} \begin{aligned}
& \frac{(2 p-2 k-q)^{\mu}(p-q)^{\nu}-2(2 p-q)^{\mu} k^{\nu}}{D_{1} D_{2} D_{3}} \\
&+8 e^{2} g_{s} \int_{0}^{1} d x \int_{0}^{1-x} d y \sqrt{\frac{\left(d^{2} k\right.}{(2)^{2}} \frac{k^{\mu} k^{\nu}}{D_{a v^{3}}}} \\
&= \frac{d^{2} l}{(2 \pi)^{2}} \frac{[l+(x+y) p-y q]^{\mu}[l+(x+y) p-y q]^{v}}{\left(l^{2}-\Delta\right)^{3}} \\
& \text { in which } \\
& \int \frac{d^{2} l}{(2 \pi)^{2}} \frac{l^{\mu} l^{\nu}}{\left(l^{2}-\Delta\right)^{3}}=\int \frac{d^{2} l}{(2 \pi)^{2}} \frac{1}{2} g^{\mu \nu} l^{2} \\
&\left(l^{2}-\Delta\right)^{3}
\end{aligned}
$$

$$
\text { for }++ \text { and }- \text {, this is } 0 \text {. }
$$

The democracy of light-front components and the zero mode issue
ᄂ The light-front zero-mode issue
$L_{\text {manifestation of the zero-mode issue in the transition form factor in } 1+1-\mathrm{d} \text { scalar model }}^{\text {m }}$

$$
\begin{array}{rlr}
T_{D}^{--}= & i^{2} g_{s} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{(2 p-2 k-q)^{-}(p-q)^{-}-2(2 p-q)^{-} k^{-}}{D_{1} D_{2} D_{3}} \quad \text { no problem } \\
& +8 i e^{2} g_{s} \int_{0}^{1} d x \int_{0}^{1-x} d y \int \frac{d^{2} k}{(2,)^{2}} \frac{\left[(x+y) p^{-}-y q^{-}\right]^{2}}{D_{\operatorname{cov}}{ }^{3}} & \text { dort know } \\
T_{D}^{++}= & i^{2} g_{s} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{(2 p-2 k-q)^{+}(p-q)^{+}-2(2 p-q)^{+} k^{+}}{D_{1} D_{2} D_{3}} \quad \text { no problem } \\
& +8 i e^{2} g_{s} \int_{0}^{1} d x \int_{0}^{1-x} d y \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{\left[(x+y) p^{+}-y q^{+}\right]^{2}}{D_{c o v}^{3}} \quad \text { no problem }
\end{array}
$$

The democracy of light-front components and the zero mode issue
ᄂ The light-front zero-mode issue
$L_{\text {manifestation of the zero-mode issue in the transition form factor in } 1+1-\mathrm{d} \text { scalar model }}^{\text {m }}$

Now, the problem becomes:
knowing that

$$
\begin{align*}
& \text { Knowing that } \\
& \delta i e^{2} g_{s} \int_{0}^{1} d x \int_{0}^{1-x} d y \int \frac{d^{2} k}{(2 \pi x)^{2}} \frac{\left[(x+y) p^{+}-y q^{+}\right]^{2}}{D_{\operatorname{cov}^{3}}}=8 i^{2} g_{s}(p+)^{2} \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{d^{2} k[(x+y)-y \alpha]^{2}}{(2 x)^{2}} \frac{e^{2} g_{s}}{4 \pi}\left(p^{+}\right)^{2} \int_{0}^{1-\alpha} d x \frac{4 x^{2}}{(1-x-\alpha)(1-x) x\left(\frac{m^{2}}{x}+\frac{m^{2}}{1-x-\alpha}-\frac{q^{2}}{1-\alpha}\right)\left(\frac{m^{2}}{x}+\frac{m^{2}}{1-x}-M^{2}\right)} \tag{b}\\
& +\frac{e^{2} g_{s}}{4 \pi}\left(q^{+}\right)^{2} \int_{1-\alpha}^{1} d x \frac{4 x^{2}}{(1-x-\alpha)(1-x) x\left(\frac{m^{2}}{1-x-\alpha}-\frac{m^{2}}{1-x}+M^{2}-\frac{q^{\prime 2}}{1-\alpha}\right)\left(\frac{m^{2}}{1-x}+\frac{m^{2}}{x}-M^{2}\right)}
\end{align*}
$$

What is

$$
8 i e^{2} g_{s} \int_{0}^{1} d x \int_{0}^{-x} d y \int \frac{d^{2} k}{(2)^{2}} \frac{\left[(x+y) p^{-}-y q^{-}\right]^{2}}{D_{\operatorname{cov}}{ }^{3}} ?(t)
$$

The democracy of light-front components and the zero mode issue
ᄂ The light-front zero-mode issue
$L_{\text {manifestation of the zero-mode issue in the transition form factor in } 1+1-\mathrm{d} \text { scalar model }}^{\text {m }}$

Obviously, if I define $\beta=\frac{q^{-}}{p^{-}}=1-\frac{q^{2}}{M^{2}(1-\alpha)}$, then

$$
\begin{align*}
(*) & =8 i e^{2} g_{s} \int_{0}^{1} d x \int_{0}^{1-x} d y \int \frac{\alpha^{2} k}{(2 x)^{2}} \frac{[(x+y)-y \beta]^{2}}{D c_{0}^{3}}\left(p^{-}\right)^{2} \\
& =\frac{e^{2} g_{s}}{4 \pi}\left(p^{-}\right)^{2} \int_{0}^{1-\beta} d x \frac{4 x^{2}}{(1-x-\beta)(1-x) x\left(\frac{m^{2}}{x}+\frac{m^{2}}{1-x-\beta}-\frac{q^{2}}{1-\beta}\right)\left(\frac{m^{2}}{x}+\frac{m^{2}}{1-x}-M^{2}\right)} \tag{b}\\
& \left.+\frac{e^{2} g_{s}}{4 \pi} \psi^{-}\right)^{2} \int_{1-\beta}^{1} d x \frac{4 x^{2}}{(1-x-\beta)(1-x) \times\left(\frac{m^{2}}{1-x-\beta}-\frac{m^{2}}{1-x}+M^{2}-\frac{q^{2}}{1-\beta}\right)\left(\frac{m^{2}}{1-x}+\frac{m^{2}}{x}-M^{2}\right)} \tag{c}
\end{align*}
$$

Then finally I got agreement

The democracy of light-front components and the zero mode issue
-The light-front zero-mode issue

- manifestation of the zero-mode issue in the transition form factor in 1+1-d scalar model

(FLFDbmmRe[vqsq, qpsqval] + FLFDcmmRe[vqsq, qpsqval] + FLFDbmmRe β [vqsq, qpsqval] + FLFDcmmRe β [vqsq, qpsqval])/FFcove\}, [vqsq, -2, 2, $\theta .11\}]$
$0 u t[01]=\{\{0.131327,0.131327\},\{0.12023,0.12023\},\{0.109401, \theta .109401\},(0.0988565,0.0988565\},(0.0886147,0.0886147\},\{0.0786958, \theta .0786958\},\{\theta .069123,0.069123\}$, $\{0.0599231,0.0599231\},\{0.0511273,0.0511273\},\{0.0427723,0.0427723\},\{0.0349018,0.0349018\},\{0.0275692,0.0275692\},\{0.0208403,0.0208403\}$, $\{0.0147987,0.0147987\},\{0.00955368,0.00955368\},\{0.00525288,0.00525288\},(0.00210402,0.00210402\},\{0.000384404,0.000384404\},\left\{9.29468 \times 10^{-6}, 9.29468 \times 10^{-6}\right\}$, $\{-0.0000120844,-\theta .0000120844\},\{-0.0000154924,-\theta .0000154924\},\{-0.0000151337,-\theta .0000151337\},\left\{-6.64996 \times 10^{-6},-6.64996 \times 1 \theta^{-6}\right\}$,
$\left\{-3.064 \theta 9 \times 1 \theta^{-6},-3.064 \theta 9 \times 1 \theta^{-6}\right\},\left\{-1.36938 \times 1 \theta^{-6},-1.36938 \times 1 \theta^{-6}\right\},\left\{-5.06108 \times 1 \theta^{-7},-5.06108 \times 10^{-7}\right\},\left\{-4.4858 \times 1 \theta^{-8},-4.4858 \times 1 \theta^{-8}\right\}$,
$\left\{2.07802 \times 10^{-7}, 2.07802 \times 10^{-7}\right\},\left\{3.46376 \times 10^{-7}, 3.46376 \times 10^{-7}\right\},\left\{4.20073 \times 10^{-7}, 4.20073 \times 10^{-7}\right\},\left\{4.55836 \times 10^{-7}, 4.55836 \times 10^{-7}\right\},\left\{4.6903 \times 10^{-7}, 4.6903 \times 10^{-7}\right\}$,
$\left.\left\{4.68699 \times 10^{-7}, 4.68699 \times 1 \theta^{-7}\right\},\left\{4.60305 \times 1 \theta^{-7}, 4.60305 \times 1 \theta^{-7}\right\},\left\{4.47214 \times 1 \theta^{-7}, 4.47214 \times 1 \theta^{-7}\right\},\left\{4.31527 \times 10^{-7}, 4.31527 \times 10^{-7}\right\},\left\{4.14564 \times 10^{-7}, 4.14564 \times 10^{-7}\right\}\right\}$
$\operatorname{In}[82]=\operatorname{Table}\left[\left\{\left(\frac{q p s q v a l}{\left(q p s q v a l-(1-\alpha) M^{2}\right)}\left(, \alpha \rightarrow \frac{M^{2}-q p s q v a l+v q s q+\sqrt{\left(-M^{2}+q p s q v a l-v q s q\right)^{2}-4 M^{2} v q s q}}{2(1-\alpha)^{2}}\right) * F F \operatorname{covIm}[v q s q] / F F c o v \theta / 2\right.\right.\right.$,
(FLFDbmmIm[vqsq, qpsqval] + FLFDcmmIm[vqsq, qpsqval] + FLFDbmmIm [vqsq, qpsqval] + FLFDcmmIm β [vqsq, qpsqval])/FFcovo $\},\{v q s q,-2,2, \theta .11\}]$
 $\{0 ., 0\},.\{0 ., 0\},.\{0 ., 0\},.\{0 ., 0\},.\{0 ., 0\},.\{-0.0000121831,-0.0000121831\},\{-0.000011436,-0.000011436\},\left\{-9.09137 \times 10^{-6},-9.09137 \times 10^{5}\right\}$,
$\left\{-7.16059 \times 10^{-6},-7.16059 \times 10^{-6}\right\},\left\{-5.717 \theta 2 \times 10^{-6},-5.71702 \times 10^{-6}\right\},\left\{-4.64417 \times 10^{-6},-4.64417 \times 10^{-6}\right\},\left\{-3.83603 \times 10^{-6},-3.83603 \times 10^{-6}\right\}$,
$\left\{-3.21636 \times 10^{-6},-3.21636 \times 10^{-6}\right\},\left\{-2.73264 \times 10^{-6},-2.73264 \times 1 \theta^{-6}\right\},\left\{-2.34871 \times 10^{-6},-2.34871 \times 10^{-6}\right\},\left\{-2.03938 \times 10^{-6},-2.03938 \times 10^{-6}\right\}$,
$\left.\left\{-1.78675 \times 10^{-6},-1.78675 \times 1 \theta^{-6}\right\},\left\{-1.57791 \times 10^{-6},-1.57791 \times 1 \theta^{-6}\right\},\left\{-1.4034 \times 1 \theta^{-6},-1.4034 \times 10^{-6}\right\},\left\{-1.25614 \times 10^{-6},-1.25614 \times 1 \theta^{-6}\right\},\left\{-1.13077 \times 10^{-6},-1.13077 \times 1 \theta^{-6}\right\}\right\}$

The democracy of light-front components and the zero mode issue

- The light-front zero-mode issue
-manifestation of the zero-mode issue in the transition form factor in $1+1$-d scalar model

Taking $q^{\prime 2}=-1.0 \mathrm{GeV}^{2}$.

The light-front zero-mode issue

-manifestation of the zero-mode issue in the transition form factor in $1+1$-d scalar model

Taking $q^{\prime 2}=-0.1 G e V^{2}$.

The light-front zero-mode issue

-manifestation of the zero-mode issue in the transition form factor in $1+1$-d scalar model

Taking $q^{\prime 2}=-0.01 G e V^{2}$.

