The Chern Simon's action and Quantum Hall effect

Ramkumar Radhakrishnan
Department of Physics, North Carolina State University, Raleigh, United States..

APRIL 07, 2023

Motivation

Why this work ?

- Luttinger liquid model of electrons and Hubbard models - well understood through Field theory.
- To understand Quantum Hall effect as an effective theory ${ }^{1}$ of the background EM gauge field A.
- To study the emergent degrees of freedom ${ }^{2}$ - In FQHE, it gives rise to 'fractional charges'.

[^0]- Overview - Hall effect
- Chern - Simon's effective action and QHE correspondence
- Parity Anomaly

Notations Used:
QHE - Quantum Hall Effect
IQHE - Integer Quantum Hall Effect
FQHE - Fractional Quantum Hall Effect
CS - Chern Simon

Overview - Hall effect

Classical Hall effect

- A constant current I is made to flow in the x-direction. The Hall effect is the statement that this induces a voltage V_{H} in the y-direction.

Figure: Classical Hall effect

- Classical Hall effect resistivity ${ }^{3}: \rho_{x x}=\frac{m}{n e^{2} \tau} ; \rho_{x y}=\frac{B}{n e}$

[^1]
Quantum Hall effect

Because world is governed by quantum mechanics !

- Physics of electrons in semiconductors provides information about the behaviour of Fermions in lower dimensions.
- Two types - IQHE and FQHE

Integer Quantum Hall Effect

Figure: IQHE^{4}

$$
\begin{gathered}
\rho_{x y}=\frac{2 \pi \hbar}{e^{2}} \frac{1}{\nu} ; \nu \in \mathcal{Z} \\
\sigma_{x y}=\frac{1}{\rho_{x y}}=k \nu ; \nu \in \mathcal{Z}
\end{gathered}
$$

where, $k=\frac{e^{2}}{2 \pi \hbar}$

[^2]
Fractional Quantum Hall effect

Figure: FQHE 5

$$
\sigma_{x y}=k \nu ; \nu \in \mathcal{Q}
$$

where, $k=\frac{e^{2}}{2 \pi \hbar}$

[^3]Chern - Simon's effective action and QHE correspondence
(a) Massless

(b) Massive

FIG. 1. Schematic of the energy spectrum and Landau level. (a) and (b) show the massless and the massive cases ($M>0$), respectively. (g represents a monopole charge.) The right figure of (b) shows asymmetry between the positive and negative energy levels due to the absence of $-M$. (In general, there exists the energy level $E=+\operatorname{sgn}(g \cdot M)|M|$ while not $E=-\operatorname{sgn}(g \cdot M)|M|$.) The original reflection symmetry of the energy levels with respect to the zero-energy is broken due to the mass term.

QED Effective action

Lagrangian for massive QED_{2+1} is

$$
\begin{equation*}
\mathcal{L}_{2+1}=\frac{-1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}+\bar{\Psi}(i \not D-m) \Psi \tag{1}
\end{equation*}
$$

where, $\not D=\gamma_{\mu} D^{\mu}, D_{\mu}=\partial_{\mu}+i(-e) A_{\mu}, \mu=0,2,3$

Action : $S[\Psi, A]=\int d^{3} x\left\{\frac{-1}{4} F^{2}+\bar{\Psi}(i \not \partial-A-m) \Psi\right\}$ The generating functional is given by

$$
\begin{equation*}
Z\left[\eta, \eta^{\dagger}\right]=N \int d \Psi d \bar{\Psi} e^{i S[\Psi, \mathcal{A}]+\int d^{3} x \bar{\eta}(x) \Psi(x)+\int d^{3} x \bar{\Psi}(x) \eta(x)} \tag{2}
\end{equation*}
$$

Integrating $\eta, \bar{\eta}$ we get

$$
\begin{gather*}
Z[A]=N \int d \Psi d \bar{\Psi} e^{i S[\Psi, A]} \tag{3}\\
\left.Z[A]=N \int d \Psi d \bar{\Psi} e^{\int d^{3} x\left\{\frac{-1}{4} F^{2}+\bar{\Psi}(i \not \varnothing-A-m) \Psi\right.}\right\} \tag{4}
\end{gather*}
$$

where, N is a normalization factor. Now let us use some review on the properties of matrices. Using similarity transformation of matrices we write two matrices as

$$
\begin{gather*}
A=P^{-1} B P \tag{5}\\
e^{A}=P^{-1} e^{B} P \\
\operatorname{det}\left(e^{A}\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}\left(e^{B}\right) \operatorname{det}(P) \\
\operatorname{det}\left(e^{A}\right)=\operatorname{det}\left(e^{B}\right)=e^{b_{1}+b_{2}+\ldots} \\
\therefore \operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr}(B)}
\end{gather*}
$$

Now we go ahead in calculating the normalization factor. By using the above relations we write (4) as

$$
\begin{equation*}
Z[A A]=e^{i S}=N e^{\int d^{3} x \frac{-1}{4} F^{2}} \operatorname{det}[-i(i \not \partial-\not A-m)] \tag{6}
\end{equation*}
$$

This can be obtained when $A=0 \Longrightarrow Z[0]=1$. Thus

$$
\begin{gather*}
1=N \operatorname{det}[-i(i \not \partial-m)], \because F=d A \tag{7}\\
\therefore N=\operatorname{det} \frac{1}{[-i(i \not \partial-m)]}
\end{gather*}
$$

Now we denote $(i \not \partial-m)^{-1}=i X \Longrightarrow N=\operatorname{det} \frac{i X}{-i}$. We get the generating functional as

$$
\begin{equation*}
e^{i S}=e^{\int d^{3} x \frac{-1}{4} F^{2}} \operatorname{det}\left[\frac{i X}{-i}\right] \operatorname{det}\left[-i\left(\frac{1}{i X}-A\right)\right] \tag{8}
\end{equation*}
$$

Using the property of matrices, $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$. Thus

$$
\begin{equation*}
e^{i S}=e^{\int d^{3} x \frac{-1}{4} F^{2}} \operatorname{det}(\mathcal{I}-i X \not A) \tag{9}
\end{equation*}
$$

Taking \log on both sides we get

$$
i S=\int d^{3} x \frac{-1}{4} F^{2}+\ln [\operatorname{det}(\mathcal{I}-i X A)]
$$

Again using the property of matrices, $\ln [\operatorname{det} A]=\operatorname{Tr}[\ln A]$

$$
\begin{equation*}
i S=\int d^{3} x \frac{-1}{4} F^{2}+\operatorname{Tr}[\ln (\mathcal{I}-i X A)] \tag{10}
\end{equation*}
$$

Using expansion of $\ln (1-x)=-x-\frac{x^{2}}{2}-.$. we get

$$
\begin{equation*}
i S=\int d^{3} x \frac{-1}{4} F^{2}+\operatorname{Tr}\left[-i X A+\frac{1}{2} X A X A+\ldots\right] \tag{11}
\end{equation*}
$$

Emergence of Chern Simon term

$$
\begin{gather*}
i S=\int d^{3} x \frac{-1}{4} F^{2}+\operatorname{Tr}\left[-i X A A+\frac{1}{2} \operatorname{Tr}\left[X A X A A+\mathcal{O}\left(A^{3}\right)\right.\right. \\
i S=\int d^{3} x \frac{-1}{4} F^{2}+\operatorname{Tr}\left[\frac{-1}{i \not \partial-m} A A-\frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} \not A\right]+\mathcal{O}\left(A^{3}\right)\right. \\
i S=(-1)\left[\int d^{3} x \frac{1}{4} F^{2}+\operatorname{Tr}\left[\frac{1}{i \not \partial-m} A A+\frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} \not \subset\right]+\mathcal{O}\left(A^{3}\right)\right]\right. \tag{12}
\end{gather*}
$$

- First term give rise to the Maxwell term i.e. $\int d^{3} x \frac{-1}{4} F^{2}$. Chern Simon term is quadratic in A. So, we should look for the third term i.e. $\frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} A \frac{1}{i \not \partial-m} A\right]$.
- The second term gives rise to the tadpole term (one-loop Feynman diagram with one external leg) i.e. $\operatorname{Tr}\left[\frac{1}{i \not \partial-m} A\right]$.
- Therefore we are interested in $\frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} \mathscr{A}\right]$.
- Trace is a combination of space-time and spinors. We remove the space-time trace as follows.

$$
\begin{align*}
& \frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} \not A\right]=\frac{1}{2} \operatorname{tr}(\text { spinors }) \int d^{3} x\langle x|\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} \not A\right]|x\rangle \\
& \operatorname{tr} \text { (spinors) } \int d^{3} x\langle x|\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} A A\right]|x\rangle=\operatorname{tr} \text { (spinors) } \\
& \int d^{3} x d^{3} y d^{3} z d^{3} w\langle x| \frac{1}{i \not \partial-m}|y\rangle\langle y| \mathcal{A}|z\rangle \\
& \langle z| \frac{1}{i \not \partial-m}|w\rangle\langle w| \mathscr{A}|x\rangle \tag{14}
\end{align*}
$$

where,

$$
\begin{gathered}
\langle x| \frac{1}{i \not \partial-m}|y\rangle=\int d^{3} k \frac{e^{i k(x-y)}}{i \not k-m} \\
\langle y| \not{A}|z\rangle=A(y) \int d^{3} l e^{i l(y-z)} \\
\langle z| \frac{1}{i \not \partial-m}|w\rangle=\int d^{3} k^{\prime} \frac{\left.e^{i k^{\prime}(z-w}\right)}{i \not k^{\prime}-m} \\
\langle w| \mathscr{A}|x\rangle=A(w) \int d^{3} l^{\prime} e^{i l^{\prime}(w-x)}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} A A=\frac{1}{2} \operatorname{tr} \text { (spinors) } \int d^{3} x d^{3} y d^{3} z d^{3} w d^{3} k \frac{e^{i k(x-y)}}{i \not k-m}\right. \\
& \not A(y) \int d^{3} l e^{i l(y-z)} \int d^{3} k^{\prime} \frac{\left.e^{i k^{\prime}(z-w}\right)}{i \not k^{\prime}-m} A(w) \int d^{3} l^{\prime} e^{i l^{\prime}(w-x)} \\
& =\frac{1}{2} \operatorname{tr} \text { (spinors) } \int d^{3} y d^{3} w \int d^{3} k \frac{e^{i(w-y) k}}{i \not k-m} \not{A} A(y) \int d^{3} k^{\prime} \frac{e^{i(y-w) k^{\prime}}}{i \not k^{\prime}-m} \not A(w) \\
& =(-i e)^{2} \frac{1}{2} \operatorname{tr} \text { (spinors) } \int d^{3} y d^{3} w A^{\mu}(y) A^{\nu}(w) \int d^{3} k \frac{e^{i(w-y) k}}{i \not k-m} \gamma_{\mu} \int d^{3} k^{\prime} \frac{e^{i(y-w) k^{\prime}}}{i \not k^{\prime}-m} \gamma_{\nu}
\end{aligned}
$$

Rearranging and integrating we get

$$
\begin{equation*}
=\frac{-e^{2}}{2} \int d^{3} k \int d^{3} k^{\prime} A^{\mu}\left(k-k^{\prime}\right) \operatorname{tr}(\text { spinors })\left[\frac{1}{i \not \not k-m} \gamma_{\mu} \frac{1}{i \not k^{\prime}-m} \gamma_{\nu}\right] A^{\nu}\left(k^{\prime}-k\right) \tag{16}
\end{equation*}
$$

Let $k^{\prime}-k=p \Longrightarrow k-k^{\prime}=-p$. So we get,

$$
\begin{equation*}
=\frac{-e^{2}}{2} \int d^{3} p A^{\mu}(-p)\left\{\int d^{3} k t r \text { (spinors) }\left[\frac{1}{i \not k-m} \gamma_{\mu} \frac{1}{i(\not k+\not p)-m} \gamma_{\nu}\right]\right\} A^{\nu}(p) \tag{17}
\end{equation*}
$$

Since, $k^{\prime}=k+p$. We know the chern simon term is quadratic in A with a ϵ term which arises through three gamma matrices. Let us now look at

$$
\begin{align*}
& \left\{\int d^{3} k \operatorname{tr} \text { (spinors) }\left[\frac{1}{i k-m} \gamma_{\mu} \frac{1}{i(k+\not p)-m} \gamma_{\nu}\right]\right\} \\
& \int d^{3} k \operatorname{tr} \text { (spinors) }\left[\frac{1}{i \not k-m} \gamma_{\mu} \frac{1}{i(\not k+\not p)-m} \gamma_{\nu}\right]=\int d^{3} k \operatorname{tr} \text { (spinors) } \\
& \qquad\left[\frac{i \not k+m}{k^{2}+m^{2}} \gamma_{\mu} \frac{i(\not k+\not p)+m}{(k+p)^{2}+m^{2}} \gamma_{\nu}\right] \tag{18}
\end{align*}
$$

We now look for the terms which can give 3 gamma matrices so that,

$$
\begin{equation*}
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\lambda} \gamma_{\nu}\right)=2 \epsilon_{\mu \lambda \nu} \tag{19}
\end{equation*}
$$

Thus we get the following terms,

$$
\begin{gather*}
{\left[\frac{i \not k+m}{k^{2}+m^{2}} \gamma_{\mu} \frac{i(\not k+\not p)+m}{(k+p)^{2}+m^{2}} \gamma_{\nu}\right]=\frac{i \not k \gamma_{\mu} m \gamma_{\nu}+m \gamma_{\mu} i(\not k+\not p) \gamma_{\nu}}{\left(k^{2}+m^{2}\right)\left((k+p)^{2}+m^{2}\right)}} \\
{\left[\frac{i \not k+m}{k^{2}+m^{2}} \gamma_{\mu} \frac{i(\not k+\not p)+m}{(k+p)^{2}+m^{2}} \gamma_{\nu}\right]=i m\left[\frac{\gamma_{\lambda} k^{\lambda} \gamma_{\mu} \gamma_{\nu}+\gamma_{\mu} \gamma_{\lambda} k^{\lambda} \gamma_{\nu}+\gamma_{\mu} \gamma_{\lambda} p^{\lambda} \gamma_{\nu}}{\left(k^{2}+m^{2}\right)\left((k+p)^{2}+m^{2}\right)}\right]} \\
\operatorname{tr} \text { (spinors) }\left[\frac{i \not k+m}{k^{2}+m^{2}} \gamma_{\mu} \frac{i(\not k+\not p)+m}{(k+p)^{2}+m^{2}} \gamma_{\nu}\right]= \\
i m\left[\operatorname{tr} \text { (spinors) }\left[\frac{k^{\lambda} \gamma_{\mu} \gamma_{\nu} \gamma_{\lambda}+\gamma_{\nu} \gamma_{\mu} \gamma_{\lambda} k^{\lambda}+\gamma_{\nu} \gamma_{\mu} \gamma_{\lambda} p^{\lambda}}{\left(k^{2}+m^{2}\right)\left((k+p)^{2}+m^{2}\right)}\right]\right] \tag{20}
\end{gather*}
$$

$$
\begin{gather*}
\operatorname{tr} \text { (spinors) }\left[\frac{i \not k+m}{k^{2}+m^{2}} \gamma_{\mu} \frac{i(\not k+\not p)+m}{(k+p)^{2}+m^{2}} \gamma_{\nu}\right]= \\
\operatorname{im}\left[\operatorname{tr}(\text { spinors })\left[\frac{k^{\lambda}\left(2 \epsilon_{\mu \nu \lambda}\right)+\left(2 \epsilon_{\nu \mu \lambda}\right) k^{\lambda}+\left(2 \epsilon_{\nu \mu \lambda}\right) p^{\lambda}}{\left(k^{2}+m^{2}\right)\left((k+p)^{2}+m^{2}\right)}\right]\right] \tag{21}\\
\operatorname{tr} \text { (spinors) }\left[\frac{i k k+m}{k^{2}+m^{2}} \gamma_{\mu} \frac{i(\not k+\not p)+m}{(k+p)^{2}+m^{2}} \gamma_{\nu}\right]=-2 i m\left[\frac{\epsilon_{\mu \nu \lambda}}{\left(k^{2}+m^{2}\right)\left((k+p)^{2}+m^{2}\right)}\right]
\end{gather*}
$$

Thus,

$$
\begin{align*}
\frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} A\right]= & -i m e^{2} \int d^{3} p A^{\mu}(-p) \epsilon_{\mu \nu \lambda} p^{\lambda}\{ \\
& \left.\int d^{3} k \frac{1}{\left(k^{2}+m^{2}\right)\left((k+p)^{2}+m^{2}\right)}\right\} A^{\nu}(p) \tag{22}
\end{align*}
$$

Feynman Trick

Now by using Feynman trick, $\int \frac{1}{A B}=\int_{0}^{1} d x \frac{1}{[A+(B-A) x]^{2}}$,
where $A=k^{2}+m^{2}, B=(k+p)^{2}+m^{2}$ The denominator becomes, $\int d^{3} k \int_{0}^{1} d x \frac{1}{\left[(k+p x)^{2}+p^{2} x(1-x)+m^{2}\right]^{2}}$. To evaluate this we need to use beta and gamma functions. We can use this identity,

$$
\begin{equation*}
\int d^{3} k \frac{1}{\left(k^{2}-\Delta\right)^{2}}=\frac{i}{(4 \pi)^{3 / 2}} \frac{\Gamma(1 / 2)}{\Gamma(2)} \frac{1}{\Delta^{1 / 2}} \tag{23}
\end{equation*}
$$

where, $k=k+p x, \Delta=p^{2} x(1-x)+m^{2}$. This integral is evaluated by converting the given integral in spherical polar co ordinates and doing the wick rotations.
Therefore, we get

$$
\begin{align*}
& \frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} A \frac{1}{i \not \partial-m} A\right]=\frac{m e^{2} \sqrt{\pi}}{(4 \pi)^{3 / 2}} \int d^{3} p A^{\mu}(-p) \epsilon_{\mu \nu \lambda} p^{\lambda}\{ \\
& \left.\quad \int_{0}^{1} d x \frac{1}{\sqrt{p^{2} x(1-x)+m^{2}}}\right\} A^{\nu}(p) \tag{24}\\
& \frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} A \frac{1}{i \not \partial-m} A\right]=\frac{m e^{2} f(m)}{8 \pi} \int d^{3} p A^{\mu}(-p) \epsilon_{\mu \nu \lambda} p^{\lambda} A^{\nu}(p) \tag{25}
\end{align*}
$$

where, $f(m)$ is the result of the integration of $\int d^{3} k \int_{0}^{1} d x \frac{1}{\left[(k+p x)^{2}+p^{2} x(1-x)+m^{2}\right]^{2}}$.

Pauli Villers Regularisation

$$
\begin{aligned}
& \text { We know that } \Delta^{1 / 2}=\sqrt{p^{2} x(1-x)+m^{2}} \\
& \frac{1}{\Delta^{1 / 2}}=\frac{1}{ \pm m} \int_{0}^{1} d x \frac{1}{\sqrt{\frac{p^{2}}{m^{2}} x(1-x)+1}}
\end{aligned}
$$

By using the procedure of completing the squares, the denominator changes as follows

$$
\frac{1}{\Delta^{1 / 2}}=\frac{1}{ \pm m} \int_{0}^{1} d x \frac{1}{\sqrt{\left(\frac{1}{4} \frac{p^{2}}{m^{2}}+1\right)-\left(\frac{p^{2}}{m^{2}}\left(x-\frac{1}{2}\right)^{2}\right)}}
$$

There are no divergences, so we take the limit $\frac{p^{2}}{m^{2}} \rightarrow 0 \ni m \neq 0$

$$
\begin{align*}
\frac{1}{\Delta^{1 / 2}} & =\frac{1}{ \pm m} \\
\int d^{3} k \frac{1}{\left(k^{2}-\Delta\right)^{2}} & =\frac{i}{(4 \pi)^{3 / 2}} \frac{\Gamma(1 / 2)}{\Gamma(2)} \frac{1}{ \pm m} \tag{26}
\end{align*}
$$

The values of $\Gamma(1 / 2)=\sqrt{\pi}, \Gamma(2)=1$

$$
\begin{equation*}
\int d^{3} k \frac{1}{\left(k^{2}-\Delta\right)^{2}}=\frac{i}{8 \pi} \frac{1}{|m|} \tag{27}
\end{equation*}
$$

Thus we get the value of $f(m)$ as $|m|$.Transforming from momentum to position space again we get

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tr}\left[\frac{1}{i \not \partial-m} \not A \frac{1}{i \not \partial-m} A A\right]=\frac{m e^{2}}{8 \pi|m|} \int d^{3} x \epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu} \tag{28}
\end{equation*}
$$

The chern simon term has a zero mass dimension so there should be a mass dimensional term in the denominator which can be obtained through some regularization. Now, we write the whole action as follows:

$$
\begin{equation*}
i S=(-1) \int d^{3} x\left\{\frac{1}{4} F^{2}+\text { tadpole term }+\frac{m e^{2}}{8 \pi|m|} \epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu}\right\}+\mathcal{O}\left(A^{3}\right) \tag{29}
\end{equation*}
$$

Figure: Tadpole term

Figure: Propagators

Now we only focus the chern simon term,

$$
\begin{equation*}
i S=(-1) \int d^{3} x \frac{m e^{2}}{8 \pi|m|} \epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu} \tag{30}
\end{equation*}
$$

So, we get the action as

$$
\begin{equation*}
S=(i) \int d^{3} x \frac{m e^{2}}{8 \pi|m|} \epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu} \tag{31}
\end{equation*}
$$

Concerned Lagrangian which has the chern simon term is given by

$$
\begin{equation*}
\mathcal{L}(\text { chern simon })=\frac{i m e^{2}}{8 \pi|m|} \epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu} \tag{32}
\end{equation*}
$$

Gamma Matrices

For space-time dimension d, the matrices would be $n \times n$ where $n=2^{\left\lfloor\frac{d}{2}\right\rfloor}$. I think the following matrices satisfies all the properties of gamma matrices.

$$
\begin{aligned}
\gamma_{0} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\gamma_{2} & =\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
\gamma_{3} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

From above we know, $\operatorname{tr}\left(\gamma_{\mu} \gamma_{\lambda} \gamma_{\nu}\right)=2 \epsilon_{\mu \lambda \nu}$, where, $\mu=0, \nu=3, \lambda=2$

$$
\begin{gather*}
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\lambda} \gamma_{\nu}\right)=\operatorname{tr}\left\{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\} \\
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\lambda} \gamma_{\nu}\right)=\operatorname{tr}\left\{\left(\begin{array}{cc}
-i & 0 \\
0 & -i
\end{array}\right)\right\} \\
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\lambda} \gamma_{\nu}\right)=-2 i \tag{33}
\end{gather*}
$$

Therefore, we substitute $-i$ instead of $\epsilon_{\mu \nu \lambda}$. We get the Chern simon Lagrangian as

$$
\begin{equation*}
\mathcal{L}(\text { chern simon })=\frac{m e^{2}}{8 \pi|m|} A^{\mu} \partial^{\lambda} A^{\nu} \tag{34}
\end{equation*}
$$

Substituting $\mu=0, \nu=3, \lambda=2$

$$
\begin{equation*}
\mathcal{L}(\text { chern simon })=\frac{m e^{2}}{8 \pi|m|} A^{0} \partial^{2} A^{3} \tag{35}
\end{equation*}
$$

Thus, the chern simon action is given by

$$
\begin{equation*}
S_{C S}=\int d^{3} x \frac{m e^{2}}{8 \pi|m|} A^{0} \partial^{2} A^{3} \tag{36}
\end{equation*}
$$

Vacuum Polarisation

Figure: Vacuum Polarisation

$$
\Pi^{\mu \nu}(p)(o d d)=\int d^{3} p A^{\mu}(-p)\left\{\int d^{3} k \operatorname{tr} \text { (spinors) }\left[\frac{1}{i k-m} \gamma_{\mu} \frac{1}{i(k+p p)-m} \gamma_{\nu}\right]\right\} A^{\nu}(p)
$$

Quantum Hall effect - CS term

$$
\begin{equation*}
Z[A]=N \int d \Psi e^{i S[\Psi, A]+i A^{\mu} J_{\mu}} \tag{37}
\end{equation*}
$$

For the CS term this can be given by

$$
\begin{gather*}
Z[A]=N \int d \Psi e^{i k S_{C S}[\Psi, A]+i A^{\mu} J_{\mu}} \tag{38}\\
<J^{\mu}>=\frac{1}{i} \frac{\delta \ln Z}{\delta A^{\mu}}=\frac{-k \delta S_{C S}}{i \delta A^{\mu}}=\frac{k}{4 \pi} \epsilon_{\mu \lambda \nu} A^{\mu} A^{\lambda} A^{\nu} \tag{39}
\end{gather*}
$$

IQHE

$$
\begin{gathered}
<J^{i}>=\frac{k}{4 \pi}\left(\epsilon_{i j 0}\right) \partial^{j} A^{0}=\frac{k}{2 \pi} \epsilon_{i j 0} E^{j} \\
<J_{0}>=\frac{k}{4 \pi}\left(\epsilon_{0 i j}\right) \partial^{i} A^{j}=\frac{k}{2 \pi} \epsilon_{0 i j} B \\
\sigma=\frac{k}{2 \pi}
\end{gathered}
$$

where, k is an integer. k describes filled Landau levels. The quantised CS coupling (as a result of gauge invariance) therefore means the CS action necessarily describes the integer quantum Hall effect with $\nu=k$ filled Landau levels. Number of electrons in the Landau level is

$$
\begin{equation*}
n_{e}=k \int d^{2} x \frac{B}{2 \pi}=k g \tag{40}
\end{equation*}
$$

g - number of electrons in each Landau level.

Parity Anomaly

Action:

$$
\begin{equation*}
S_{C S}=(i) \int d^{3} x \frac{m e^{2}}{8 \pi|m|} \epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu} \tag{41}
\end{equation*}
$$

- Parity operator - $P_{\mu}^{\nu}=\operatorname{diag}(1,-1,1)$. It acts on $x_{\mu} \rightarrow P_{\mu}^{\nu} x_{\nu}$.
- The gauge field transforms in the same way the coordinates since it is a covariant vector.

$$
\epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu} \rightarrow-\epsilon_{\mu \nu \lambda} A^{\mu} \partial^{\lambda} A^{\nu}
$$

- Since we expect to use the CS theory to describe a system in a magnetic field which inherently breaks parity. We have now checked that the CS action possesses all of the required features needed for it to describe the integer quantum Hall effect.

Parity anomaly - Detailed

- Parity inversion acts as $x^{1} \rightarrow x^{1}$ and $x^{2} \rightarrow-x^{2}$, and acts on the fermion as $\psi \rightarrow \sigma^{2} \psi$.
- The mass term $m \bar{\psi} \psi$ breaks this \mathcal{Z}^{2} parity symmetry, and therefore an effective theory derived from a massive fermion may also break parity symmetry.
- The Chern-Simons term is one such parity-odd term, and we will indeed find that it arises as a quantum correction to the effective action.
- This result, wherein the CS term breaks the classical parity symmetry of the gauge field, is dubbed the 'parity anomaly'.
- An anomaly is a symmetry which is conserved in the classical action S, but is broken in the quantum path integral.
- In our example the tree-level effective action is parity-symmetric but if one tries to quantise the massless theory there are IR divergences which must be regulated with a mass.
- This mass term immediately breaks parity symmetry (and so do the one-loop vacuum polarisation bubble diagrams which are generated in perturbation theory), but this is an unavoidable step which must be taken to have a regularised quantum theory.
- Therefore it can be shown that the parity symmetry is not a true symmetry of the quantum theory, and the theory is anomalous.

Thank you for your attention!

[^0]: ${ }^{1}$ Interactions of electrons and magnetic field is considered as an effective action
 ${ }^{2}$ These emergent degrees of freedom is seen coupled with EM field with the gauge field A.

[^1]: ${ }^{3}$ D. Tong, Quantum Hall effect, Infosys TIFR Lectures

[^2]: ${ }^{4}$ K. v Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45494.

[^3]: ${ }^{5}$ D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48 (1982)1559.

