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Motivation
Why this work ?

▶ Luttinger liquid model of electrons and Hubbard models - well understood
through Field theory.

▶ To understand Quantum Hall effect as an effective theory 1 of the background
EM gauge field A.

▶ To study the emergent degrees of freedom2 - In FQHE, it gives rise to ‘fractional
charges’.

1Interactions of electrons and magnetic field is considered as an effective action
2These emergent degrees of freedom is seen coupled with EM field with the gauge field A.
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Aim
Outline

▶ Overview - Hall effect

▶ Chern - Simon’s effective action and QHE correspondence

▶ Parity Anomaly

Notations Used:
QHE - Quantum Hall Effect
IQHE - Integer Quantum Hall Effect
FQHE - Fractional Quantum Hall Effect
CS - Chern Simon
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Overview - Hall effect
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Classical Hall effect

▶ A constant current I is made to flow in the x-direction. The Hall effect is the
statement that this induces a voltage VH in the y-direction.

Figure: Classical Hall effect

▶ Classical Hall effect resistivity3: ρxx = m
ne2τ

; ρxy = B
ne

3D. Tong, Quantum Hall effect, Infosys TIFR Lectures
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Quantum Hall effect
Because world is governed by quantum mechanics !

▶ Physics of electrons in semiconductors provides information about the
behaviour of Fermions in lower dimensions.

▶ Two types - IQHE and FQHE
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Integer Quantum Hall Effect

Figure: IQHE4

ρxy = 2πℏ
e2

1
ν

; ν ∈ Z

σxy = 1
ρxy

= kν; ν ∈ Z

where, k = e2

2πℏ
4K. v Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine Structure

Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45 494.
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http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.494


Fractional Quantum Hall effect

Figure: FQHE5

σxy = kν; ν ∈ Q

where, k = e2

2πℏ

5D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme
Quantum Limit, Phys. Rev. Lett. 48 (1982)1559.
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http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.48.1559


Chern - Simon’s effective action and QHE correspondence
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Energy levels
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QED Effective action

Lagrangian for massive QED2+1 is

L2+1 = −1
4e2FµνF

µν + Ψ̄(i /D −m)Ψ (1)

where, /D = γµD
µ, Dµ = ∂µ + i(−e)Aµ, µ = 0, 2, 3

Action : S[Ψ, /A] =
∫
d3x

{
−1
4 F

2 + Ψ̄(i/∂ − /A−m)Ψ
}

The generating functional

is given by

Z[η, η†] = N

∫
dΨdΨ̄eiS[Ψ, /A]+

∫
d3xη̄(x)Ψ(x)+

∫
d3xΨ̄(x)η(x) (2)
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Integrating η, η̄ we get

Z[ /A] = N

∫
dΨdΨ̄eiS[Ψ, /A] (3)

Z[ /A] = N

∫
dΨdΨ̄e

∫
d3x

{
−1
4 F 2+Ψ̄(i/∂− /A−m)Ψ

}
(4)

where, N is a normalization factor. Now let us use some review on the properties of
matrices. Using similarity transformation of matrices we write two matrices as

A = P−1BP (5)

eA = P−1eBP

det(eA) = det(P−1)det(eB)det(P )

det(eA) = det(eB) = eb1+b2+...

∴ det(eA) = eTr(B)
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Now we go ahead in calculating the normalization factor. By using the above
relations we write (4) as

Z[ /A] = eiS = Ne

∫
d3x −1

4 F 2
det[−i(i/∂ − /A−m)] (6)

This can be obtained when A = 0 =⇒ Z[0] = 1. Thus

1 = Ndet[−i(i/∂ −m)],∵ F = dA (7)

∴ N = det
1

[−i(i/∂ −m)]
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Now we denote (i/∂ −m)−1 = iX =⇒ N = det iX
−i

. We get the generating
functional as

eiS = e

∫
d3x −1

4 F 2
det

[
iX

−i

]
det

[
− i

(
1
iX

− /A

)]
(8)

Using the property of matrices, det(AB) = detA.detB. Thus

eiS = e

∫
d3x −1

4 F 2
det(I − iX /A) (9)

Taking log on both sides we get

iS =
∫
d3x

−1
4 F 2 + ln

[
det(I − iX /A)

]
Again using the property of matrices, ln[detA] = Tr[lnA]

iS =
∫
d3x

−1
4 F 2 + Tr

[
ln(I − iX /A)

]
(10)

Using expansion of ln(1 − x) = −x− x2

2 − .. we get

iS =
∫
d3x

−1
4 F 2 + Tr

[
− iX /A+ 1

2X
/AX /A+ ...

]
(11)
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Emergence of Chern Simon term

iS =
∫
d3x

−1
4 F 2 + Tr

[
− iX /A

]
+ 1

2Tr
[
X /AX /A

]
+ O( /A3)

iS =
∫
d3x

−1
4 F 2 + Tr

[
−1

i/∂ −m
/A

]
− 1

2Tr
[

1
i/∂ −m

/A
1

i/∂ −m
/A

]
+ O( /A3)

iS = (−1)

[ ∫
d3x

1
4F

2+Tr
[

1
i/∂ −m

/A

]
+1

2Tr
[

1
i/∂ −m

/A
1

i/∂ −m
/A

]
+O( /A3)

]
(12)

▶ First term give rise to the Maxwell term i.e.
∫
d3x−1

4 F
2. Chern Simon term is

quadratic in A. So, we should look for the third term i.e.
1
2Tr

[
1

i/∂−m
/A 1

i/∂−m
/A

]
.

▶ The second term gives rise to the tadpole term (one-loop Feynman diagram with

one external leg) i.e. Tr

[
1

i/∂−m
/A

]
.

▶ Therefore we are interested in 1
2Tr

[
1

i/∂−m
/A 1

i/∂−m
/A

]
.
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▶ Trace is a combination of space-time and spinors. We remove the space-time
trace as follows.

1
2Tr

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
= 1

2 tr(spinors)
∫
d3x ⟨x|

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
|x⟩

(13)

tr(spinors)
∫
d3x ⟨x|

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
|x⟩ = tr(spinors)∫

d3xd3yd3zd3w ⟨x| 1
i/∂ −m

|y⟩ ⟨y| /A |z⟩

⟨z| 1
i/∂ −m

|w⟩ ⟨w| /A |x⟩ (14)

where,

⟨x| 1
i/∂ −m

|y⟩ =
∫
d̄3k

eik(x−y)

i/k −m

⟨y| /A |z⟩ = /A(y)
∫
d̄3leil(y−z)

⟨z| 1
i/∂ −m

|w⟩ =
∫
d̄3k′ e

ik′(z−w)
i/k

′ −m

⟨w| /A |x⟩ = /A(w)
∫
d̄3l′eil′(w−x)
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Thus,

1
2Tr

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
= 1

2 tr(spinors)
∫
d3xd3yd3zd3wd̄3k

eik(x−y)

i/k −m

/A(y)
∫
d̄3leil(y−z)

∫
d̄3k′ e

ik′(z−w)
i/k

′ −m
/A(w)

∫
d̄3l′eil′(w−x) (15)

= 1
2 tr(spinors)

∫
d3yd3w

∫
d̄3k

ei(w−y)k

i/k −m
/A(y)

∫
d̄3k′ e

i(y−w)k′

i/k
′ −m

/A(w)

= (−ie)2 1
2 tr(spinors)

∫
d3yd3wAµ(y)Aν(w)

∫
d̄3k

ei(w−y)k

i/k −m
γµ

∫
d̄3k′ e

i(y−w)k′

i/k
′ −m

γν

Rearranging and integrating we get

= −e2

2

∫
d̄3k

∫
d̄3k′Aµ(k − k′)tr(spinors)

[
1

i/k −m
γµ

1
i/k

′ −m
γν

]
Aν(k′ − k)

(16)
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Let k′ − k = p =⇒ k − k′ = −p. So we get,

= −e2

2

∫
d̄3pAµ(−p)

{ ∫
d̄3ktr(spinors)

[
1

i/k −m
γµ

1
i(/k + /p) −m

γν

]}
Aν(p)

(17)
Since, k′ = k + p. We know the chern simon term is quadratic in A with a ϵ term
which arises through three gamma matrices. Let us now look at{ ∫

d̄3ktr(spinors)
[

1
i/k−m

γµ
1

i(/k+/p)−m
γν

]}
∫
d̄3ktr(spinors)

[
1

i/k −m
γµ

1
i(/k + /p) −m

γν

]
=

∫
d̄3ktr(spinors)[

i/k +m

k2 +m2 γµ

i(/k + /p) +m

(k + p)2 +m2 γν

]
(18)
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We now look for the terms which can give 3 gamma matrices so that,

tr(γµγλγν) = 2ϵµλν (19)

Thus we get the following terms,[
i/k +m

k2 +m2 γµ

i(/k + /p) +m

(k + p)2 +m2 γν

]
=
i/kγµmγν +mγµi(/k + /p)γν

(k2 +m2)((k + p)2 +m2)[
i/k +m

k2 +m2 γµ

i(/k + /p) +m

(k + p)2 +m2 γν

]
= im

[
γλk

λγµγν + γµγλk
λγν + γµγλp

λγν

(k2 +m2)((k + p)2 +m2)

]

tr(spinors)
[
i/k +m

k2 +m2 γµ

i(/k + /p) +m

(k + p)2 +m2 γν

]
=

im

[
tr(spinors)

[
kλγµγνγλ + γνγµγλk

λ + γνγµγλp
λ

(k2 +m2)((k + p)2 +m2)

]]
(20)
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tr(spinors)
[
i/k +m

k2 +m2 γµ

i(/k + /p) +m

(k + p)2 +m2 γν

]
=

im

[
tr(spinors)

[
kλ(2ϵµνλ) + (2ϵνµλ)kλ + (2ϵνµλ)pλ

(k2 +m2)((k + p)2 +m2)

]]
(21)

tr(spinors)
[
i/k +m

k2 +m2 γµ

i(/k + /p) +m

(k + p)2 +m2 γν

]
= −2im

[
ϵµνλ

(k2 +m2)((k + p)2 +m2)

]
Thus,

1
2Tr

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
= −ime2

∫
d̄3pAµ(−p)ϵµνλp

λ

{
∫
d̄3k

1
(k2 +m2)((k + p)2 +m2)

}
Aν(p) (22)
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Feynman Trick
Now by using Feynman trick,

∫ 1
AB

=
∫ 1

0 dx
1

[A+(B−A)x]2 ,
where A = k2 +m2, B = (k + p)2 +m2 The denominator becomes,∫
d̄3k

∫ 1
0 dx

1
[(k+px)2+p2x(1−x)+m2]2 . To evaluate this we need to use beta and

gamma functions. We can use this identity,∫
d̄3k

1
(k2 − ∆)2 = i

(4π)3/2
Γ(1/2)
Γ(2)

1
∆1/2 (23)

where, k = k + px,∆ = p2x(1 − x) +m2. This integral is evaluated by converting
the given integral in spherical polar co ordinates and doing the wick rotations.
Therefore, we get

1
2Tr

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
= me2√

π

(4π)3/2

∫
d̄3pAµ(−p)ϵµνλp

λ

{
∫ 1

0
dx

1√
p2x(1 − x) +m2

}
Aν(p) (24)

1
2Tr

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
= me2f(m)

8π

∫
d̄3pAµ(−p)ϵµνλp

λAν(p) (25)

where, f(m) is the result of the integration of
∫
d̄3k

∫ 1
0 dx

1
[(k+px)2+p2x(1−x)+m2]2 .
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Pauli Villers Regularisation

We know that∆1/2 =
√
p2x(1 − x) +m2

1
∆1/2 = 1

±m

∫ 1

0
dx

1√
p2

m2 x(1 − x) + 1

By using the procedure of completing the squares, the denominator changes as
follows

1
∆1/2 = 1

±m

∫ 1

0
dx

1√(
1
4

p2

m2 + 1
)

−
(

p2

m2 (x− 1
2 )2

)
There are no divergences, so we take the limit p2

m2 → 0 ∋ m ̸= 0

1
∆1/2 = 1

±m∫
d̄3k

1
(k2 − ∆)2 = i

(4π)3/2
Γ(1/2)
Γ(2)

1
±m (26)
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The values of Γ(1/2) =
√
π,Γ(2) = 1∫

d̄3k
1

(k2 − ∆)2 = i

8π
1

|m| (27)

Thus we get the value of f(m) as |m|.Transforming from momentum to position
space again we get

1
2Tr

[
1

i/∂ −m
/A

1
i/∂ −m

/A

]
= me2

8π|m|

∫
d3xϵµνλA

µ∂λAν (28)

The chern simon term has a zero mass dimension so there should be a mass
dimensional term in the denominator which can be obtained through some
regularization. Now, we write the whole action as follows:

iS = (−1)
∫
d3x

{
1
4F

2 + tadpole term + me2

8π|m| ϵµνλA
µ∂λAν

}
+ O( /A3) (29)
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Figure: Tadpole term

Figure: Propagators
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Now we only focus the chern simon term,

iS = (−1)
∫
d3x

me2

8π|m| ϵµνλA
µ∂λAν (30)

So, we get the action as

S = (i)
∫
d3x

me2

8π|m| ϵµνλA
µ∂λAν (31)

Concerned Lagrangian which has the chern simon term is given by

L(chern simon) = ime2

8π|m| ϵµνλA
µ∂λAν (32)

25 / 34



Gamma Matrices
For space-time dimension d, the matrices would be n× n where n = 2⌊ d

2 ⌋. I think
the following matrices satisfies all the properties of gamma matrices.

γ0 =
(

0 1
1 0

)

γ2 =
(
i 0
0 −i

)
γ3 =

(
0 −1
1 0

)
From above we know, tr(γµγλγν) = 2ϵµλν ,where, µ = 0, ν = 3, λ = 2

tr(γµγλγν) = tr

{ (
0 1
1 0

) (
i 0
0 −i

) (
0 −1
1 0

) }

tr(γµγλγν) = tr

{ (
−i 0
0 −i

) }
tr(γµγλγν) = −2i (33)
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Therefore, we substitute −i instead of ϵµνλ. We get the Chern simon Lagrangian as

L(chern simon) = me2

8π|m|A
µ∂λAν (34)

Substituting µ = 0, ν = 3, λ = 2

L(chern simon) = me2

8π|m|A
0∂2A3 (35)

Thus, the chern simon action is given by

SCS =
∫
d3x

me2

8π|m|A
0∂2A3 (36)
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Vacuum Polarisation

Figure: Vacuum Polarisation

Πµν(p)(odd) =
∫
d3pAµ(−p)

{ ∫
d3ktr(spinors)

[
1

i/k−m
γµ

1
i(/k+/p)−m

γν

]}
Aν(p)
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Quantum Hall effect - CS term

Z[A] = N

∫
dΨeiS[Ψ,A]+iAµJµ (37)

For the CS term this can be given by

Z[ /A] = N

∫
dΨeikSCS [Ψ,A]+iAµJµ (38)

< Jµ >= 1
i

δlnZ

δAµ
= −kδSCS

iδAµ
= k

4π ϵµλνA
µAλAν (39)
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IQHE

< J i >= k

4π (ϵij0)∂jA0 = k

2π ϵij0E
j

< J0 >= k

4π (ϵ0ij)∂iAj = k

2π ϵ0ijB

σ = k

2π
where, k is an integer. k describes filled Landau levels. The quantised CS coupling
(as a result of gauge invariance) therefore means the CS action necessarily describes
the integer quantum Hall effect with ν = k filled Landau levels. Number of electrons
in the Landau level is

ne = k

∫
d2x

B

2π = kg (40)

g- number of electrons in each Landau level.

30 / 34



Parity Anomaly

Action:

SCS = (i)
∫
d3x

me2

8π|m| ϵµνλA
µ∂λAν (41)

▶ Parity operator - P ν
µ = diag(1,−1, 1). It acts on xµ → P ν

µxν .
▶ The gauge field transforms in the same way the coordinates since it is a

covariant vector.
ϵµνλA

µ∂λAν → −ϵµνλA
µ∂λAν

▶ Since we expect to use the CS theory to describe a system in a magnetic field
which inherently breaks parity. We have now checked that the CS action
possesses all of the required features needed for it to describe the integer
quantum Hall effect.
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Parity anomaly - Detailed

▶ Parity inversion acts as x1 → x1 and x2 → −x2, and acts on the fermion as
ψ → σ2ψ.

▶ The mass term mψ̄ψ breaks this Z2 parity symmetry, and therefore an effective
theory derived from a massive fermion may also break parity symmetry.

▶ The Chern–Simons term is one such parity-odd term, and we will indeed find
that it arises as a quantum correction to the effective action.

▶ This result, wherein the CS term breaks the classical parity symmetry of the
gauge field, is dubbed the ‘parity anomaly’.
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▶ An anomaly is a symmetry which is conserved in the classical action S, but is
broken in the quantum path integral.

▶ In our example the tree-level effective action is parity-symmetric but if one tries
to quantise the massless theory there are IR divergences which must be
regulated with a mass.

▶ This mass term immediately breaks parity symmetry (and so do the one-loop
vacuum polarisation bubble diagrams which are generated in perturbation
theory), but this is an unavoidable step which must be taken to have a
regularised quantum theory.

▶ Therefore it can be shown that the parity symmetry is not a true symmetry of the
quantum theory, and the theory is anomalous.
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Thank you for your attention !
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