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Scalar meson — y*~4* Transition Form Factor in 1+41-d
scalar model: Manifestly covariant calculation
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Figure: One-loop covariant Feynman Diagrams that contribute to the S — ~*~*
transition form factor

The total amplitude consists of these three Feynman diagrams, i.e., the
direct (D), crossed (C), and the seagull (S) diagrams, where p is the
momentum of the incident scalar meson, while g is the momentum of the
emitted photon. As a result of momentum conservation, ¢ = p — q is the
momentum of the final state photon.
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From gauge invariance argument, we can know that the total amplitude
" is of the form

M =F(q* q°) (g9 -4 — qd"q"), (1)
which satisfies both

9. (8"q-9d —q"q") =0 (2)

and
a,(g"q-q —q"q") =0, (3)
so that the form factor can be obtained by
rHv

2 12N\ __
F(q ’q ) - g“”q A q/ _ q/uqll' (4)
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The amplitude " is calculated as such, following the Feynman rules for
the scalar field theory.

e e e I
_ie’g / d’k (2p — 2k — )" (p — 2k — q)"
> @) \L((p—k —q)2 = m?)((p— k) — m?) (k* — m?)

(g —2k)" (p— 2k + q)”
((p— k)? = m?) (k2 — m?) ((q — k)? — m?)

+

—2oghv
e ©)

where the coupling constant of the simple scalar model gs is fixed from the
normalization condition. For simplicity, we take all the intermediate scalar
particles’ mass to be m and their charge to be e, but it can be easily

generalized to unequal mass/charge cases. The initial scalar meson has
mass M.
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We finally obtain

e2 o 1 1—x 1 1
A =52 o [ oo (mt ) ©
1 2

where
Ay =x(x—1)* +2x(x +y = 1)q- ¢ + (x +y)(x +y — 1)¢* + m*, (7)

Dy = x(x=1)q° +2x(x+y —1)g- ¢+ (x + y)(x +y = 1)g* + m*. (8)

Doing the x and y integrations, we get the analytic formula for the
transition form factor,

2
> 1 g
Flgyq7)= —X

4

Y NN/~ Sy G/ i = (A VN e S GV,
@ e by ( fw)“” v e <\s‘,_~,/ = e ( fw) N
mt [swy’y + w? (v = P = 2wy + )
2 12 2
_q /I _ g _ M
where v = a2 V= T and w = e
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Now, taking m = 0.25 GeV, M = 0.14 GeV/, and normalizing the form
factor so that F(q? =0, ¢ = 0) = 1 (thus fixing gs), and taking the
value of g2 = —0.1 GeV/?, we show below the numerical results of the
form factor as a function of . The agreement of the lines with the dots
show the agreement of our result with the Dispersion Relation (DR)

F(¢",a”=-0.1)
251

20

— Real part from covariant calculation
—— Imaginary part from covariant calculation

o Real part from DR
Imaginary part from DR
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Scalar meson — y*~4* Transition Form Factor in 1+41-d
scalar model: LFTO calculation
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Figure: (Take the direct diagram as an example). The covariant diagram (a) is
sum of the two LF xT-ordered diagrams (b) and (c).

If one assumes each individual LFTO diagram contribution is of the gauge
invariant form, i.e. I = £(¢°, ¢'*) (6"“q - ¢’ — ¢'*q”), one can obtain

the LFTO contrlbutlons by calculating just the plus-plus current:
r++ r+

B 9
fio) = gttqq—q qt’ fle) = gt Tqq—qTqt"
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However, this is not a meaningful representation of how much each LFTO
diagram contributes to the total form factor, since it depends on the
component. So actually,

r++ r++

(++) _ (b) (++) _ (<) _
f(b) o g++q . q/ — q/+q+’ f(c) - g++q . q/ _ q/+q+' (10)
+— +—
(o) _ ") () _ X8 W
B gt q- ¢ —qtq " D T gtq-q -qFq’
—+ —+
() _ ") e 1% W
(b) g_"!‘q . q/ —_ q/—q+ (c) g—+q . q/ _ q/—q+
- r
(=) _ (b) (=) _ (9 o wy

® " gmq-qd~-qq¢ D g qqd-qq'

and each of these are different.
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Usually people just look at the “good current” only, and call f((bJ)rJr) and

f(:Jr) the LFTO contributions to the form factor, or similarly, the DGLAP
and ERBL regions of GPD. So that is the motivation for us to look at
other components. We do this so-called “theoretical simulation” in this
simple model.

Last time | showed a lot of failed attempts to get the "——" component,
including the method which | thought it worked, but turned out that also
failed. But now we finally obtained it. For real this time.
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Figure: LFTO diagram contributions to the transition form factor for all 4

components.
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Scalar meson — y*~4* Transition Form Factor in 1+41-d

scalar model: “——" component of LFTO calculation
The minus minus component of the transition amplitude is
M =rp +Ic”
_ i, d’k (2p—2k—q) (p—2k—q)"
@) (o= k= = m?) (p— K7 — ) (K — m?)
2 _ _

€ [ Gy R e a0

There is no seagull term contribution for the —— current. Now plugging in the

kinematics, we get ( we just show the direct diagram calculation, the crossed diagram is
very much same calculation)

o=k [ o [0 (- a vt ) (0 e
: (2(p —k—q)f(p—k—q) - mZ)_l (2(;7 — k) (p—k) - mz)_l

: (2k+k’ - m2)_1. (15)
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Now let us do the integration [ dk™. There
are 3 poles

- — b — g — m? — ie

PP T T kgt
m? — ie

ky =p — ———

2 TP Tkt

_ m? — ie

ks = T (16)

Regiou (b): 0ogXx< |-a<)

o @

N2

h]im (¢): p<l-a<x <)

yarig

o 0

where the k; pole is located at the upper half plane, k3~ pole is at lower half plane,
while k; pole depending on the sign of 1 — x — a, when 1 — x —a > 0, it is at upper
plane, and we call this region (b). For region (b), we enclose the contour for lower half
plane and catch pole 3. When 1 — x —a < 0, it is at lower plane, and we call this region
(c). For region (c), we enclose the contour for upper half plane and catch pole 2.
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Calculating the pole residue, we get

L /e gs q/2 B q/2 B
Tow) = gz (727 /dk+<2p+ t a2 ) (st )
-[2(p—k—q) 2(p— k)T 2kT (ks — ki) (ki — k3 )]

e2gs p+ /1704 d M2 N q/2 B i2 q/2 m2
27 0 2pt " 2(1—a)pt

xpt 2(1 — a)p* T xpt
2P (1—x—0a)2p(1—x)2p"x

2 7] 2 2 2 -1
i 1_ q + m i 1_/\42_;'_ m
2pt \ x l-a 1l—x—a/2pt \ x X

1—
_ ezgs -« dx M2 q/2 3 12 q/z B ni
" 4aptpt J, 2(1 —a) X 2(l-a) x
m2 m? q” m? m? ) -1
: —X— - — — - M
|:(1 x— o) X)X<x+1—x—o¢ 1—a)(x+1—x ):|
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and

oo = e [ o (g + 5 L 25 ) (e Lo —26)

— — —1
‘[2(P*k*Q) 2(p— k)" 2k+(k2 *kl)(kz — k3 )]
2 1 2 17} 2 2
:i,ﬁ/ (M 9 M m
2m 1-a  \2p" 201 —a)pt  pt  (1-x)p*

q/2 M2 m2
‘ (2(1 R X)p+)

2Pt (1—x—a)2p" (1 —x)2p"x
-1
L _m2 4+ M- q” + m’ 1 M? — m’ _nj
2pt 1—x l-a 1—-x—a/ 2pt 1—x X
_ e2gs /1 ” q/2 B &2 N m2 q/2 B M2 N m2
drptpt Ji_, 2(1—«a) 2 1—x 2(1—«) 1—x

Ja-x-@a—ox( T ) " +ﬁ_M2ﬂ

l1—-x—« l1—« 1—x X
(18)
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However, if one adds all the LFTO contributions, one finds that it does not agree with
the covariant result.

Upon inspection, we realize that for this “minus-minus” component case, there is
enough power of k~ on the numerator for the contour integration to have contribution
from the arc. Subtracting the arc from the residue gives

24 l1-a M2 2 2 2 2
rog = 8 [T (Mt my(_atm
drptpt J, 2 2(l-a) x 2(l-a) x
m? m? q”> m? m? ) -1
Sl —x—a)(1— — — — -M
{( x—a)( X)X(x+1—x—oz l—a>(x+1—x )}

1
_2(17x7a)(lfx)x}’ (19)

and
- g, 1 q? M2 m q? , m
r = - — _M
D) ™ 4pptp+ /17‘1 dx{<2(lfoz) 2 * 1 fx) (2(1 —a) + 17X>
m2 m2 q” m2 m2
~{(1—x—o¢)(1—x)x(1_x_a—1_X+M2—1_a> (1—X+7_M2):|

+ L } . (20)

2(1 — x —a)(1 —x)x
But, this still results in disagreement between the “minus-minus” component calculation
and the covariant one.
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Interpolating between the IFD and LFD

To quantify the contributions at k=~ — oo accurately, we introduce the
interpolation method.

xT cosd  sind x0
[Xi][siné —cosé][xl]’ (21)

in which the interpolation angle is allowed to run from 0 through 45°,

0 <4 < 7. The lower index variables x; and x- are related to the upper
index variables as x; = g ,x = Cx™ 4+ Sx~ and

X2 =g pxh = —Cx~ + SxT, denoting C = cos26 and S = sin 2§ and
realizing g2 3 = —g~~ =cos20 =C and g;~ = g~; =sin20 = S. All the
indices with the hat notation signify the variables with the interpolation
angle 0. For the limit 6 — 0 we have xT =x% and x~ = —x! so that we
recover usual space-time coordinates although the z-axis is inverted while
for the other extreme limit, § — 7, we have xE = (x0 + xl)/ﬁ = x*
which leads to the standard light-front coordinates.

16/39



In the interpolation form, the 3 denominators of Eq. (15) can be rewritten
as

Di=C (ps — ks —q3)° +2S (py — ky — 1) (p= — k= — g2 )
—C(pr —k~—q-)2 —m? +1ie, (22)

D2 =C (py —k3)* +28 (py — ky) (p2 —k2) = C(pz — k2)” = m” 4 i,
(23)

and

D3 = Ck% + 2Sky k= — Ck2 — m* + ie. (24)
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There are 6 poles in total

S w1 | .
kiry =Py —ap + glp — ke —q2) F 5z £ie

S wy .

k_’"_2,2/ - p‘T‘ + E(pi - ki) F 6 + e
S w3 __ .
k_’,"_3’3/ - —Ek: :‘: 6 :F 1€

where

w1 = \/(p; — k-~ —q;)2+(Cm2

Wy = \/(p; — k;)z + Cm?

w3 = /k% +Cm?



In the C — 0 limit, in each pair of the poles, one of them goes to infinity,

the other goes to the light-front poles, Eq. (16).
We know the behavior of solutions to the quadratic equation

ax>+bx+c=0

depends on the sign of b.

3 MATHEMATICS
Home The behavior of quadratic formula in the limita — 0
pusic Asked 7years, 8 months ago  Modified 1year, 7 months ago  Viewed 2 times
© auestions |
Tags im 22V P —dac
Users 8 “h T 2a
Unonemared band c are constants. As a approaches 0, what does the formula approach?
una

b+ b —dac ~b+V b -dac b+VF-dac
lim = lim oy
10 a0 2a a0 2a b+vV b -dac
m -b? + (b* - 4ac)

i =2c
v e bV B —dac
-2¢
b+ bl

1fb > 0, then you get 72 , the root of the linear equation

ifb <0, then

« the larger one of the two quadratic roots becomes + when a — 0 ;

« the smaller one of the two quadratic roots becomes —» when @ — 0 ;

(31)

19/39



Keeping the limit to the light-front in mind, we keep the relevant terms in
the pole values at infinity taking limits such as S — 1, k~ — k™ etc.
already, while for the regular poles we substitute Eq. (16). The 6 poles

become
m? — e

lreg =P —q — Wp—k—aq) (32)
ﬂnf=p+_/g_q+¢|p+_lg_q+|iia (33)
o (34)

Kainf = +(Ek+¢"’+(;k+iie (35)
g = o (36)

kg = —lg + ”g T ie. (37)
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For the case of (b) time-ordering, we have 0 < x <1 — «a < 1. So, Eq.
(32) is located at upper half plane, Eq. (33) takes the lower sign and is
located at the lower half plane. Eq. (34) is located at upper half plane, Eq.
(35) takes the lower sign and is located at the lower half plane. Eq. (36) is
located at lower half plane, Eq. (37) takes the lower sign and is located at
the upper half plane. Now, we actually have 3 poles located at the lower
half plane, instead of just one pole in the naive light-front calculation.

Region ) O< X< = < |
o © @
o> & ®
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lin

Let us now calculate the residues of k;; - and k;; . The residue of k;;

is
f
a2t — " =N+ O©)?

(2wt — Kt — ")+ O©) (2" — K — a5+ O©)2 + 267 — i) (=2t — &t — 1) + O©) ((2p" — ¥* — ¢ + O©)% + 2t (2" — ikt — ")) + O(@)
@)

4
~2(pt — Kkt — ") (~2¢7)(2(p" — q7))

The residue of k; . is

(39)

42" — k") + O)?

(40)
(2p" — K1) + O©) (" — k) + O©) +2(p" — k" — a¥) (=2p" — k7)) + OC)) (2p" — k) + O©)* + 2k (2" — k7)) + O(C)

4
R R T R) (41)
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Adding the residues from all 3 poles on the lower half plane, we get
o e2gs -« M2 q/2 m2 q/2 m2
ro(b):ﬁ/ S tor—a <)\
pp Js 1-a) x/)\20-a) «x
m? m? qQ m? m? ) -1
. |:(1—X—01)(1—X)X <7+ l-x—a l—a) <7+ 1—x -M ):|

T ox—a)ca)i-a) " (1—x)a}' (42)
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Now similarly, for the case of (c) time-ordering, we have
0<1l—-—a<x<1. So, Eq. (32) is located at lower half plane, Eq. (33)
takes the upper sign and is located at the upper half plane. Eq. (34) is
still located at upper half plane, Eq. (35) still takes the lower sign and is
located at the lower half plane. Eq. (36) is still located at lower half plane
Eq. (37) still takes the lower sign and is located at the upper half plane.

L ]-R<X <

Rejam ©) :

o> © O
o & P

-
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Now, in addition to the regular pole residue, we need the contributions
from the 2 poles at infinity: k.. and k3 . Similar to the (b) o
time-ordering case, we calculate the residues from these 2 poles at infinity
and add them to the regular pole residue, which is the naive answer we
already obtained on the light-front. The residues from all 3 poles on the

upper half plane gives
2 2

2 1 2 2 2
__ e°gs q M m q 2 m
I = _— - M -
20 = Zrpr pr /1,adx{<2(1—a) 2 +1—x) (2(1—a) +1—x)
m? m? q? m? m?
'{(1_X_a)(l_x)x<l—x—a_ 1—X+M2_ 1—a> (1—x+7_M2)}

1 1
T (l—-x—a)(-a)1-a) (—X)(l_a)}‘ *3)
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Now, adding these two time-ordered contributions still does not give agreement to the
covariant result. That is because we have forgotten the regions of x < 0 and x > 1.
When C # 0, x is not limited to the region [0, 1], and these two regions outside of [0, 1]
do give contributions.

When x < 0 (and thus necessarily < 1 — « because « € [0,1]), Eq. (32) is located at
upper half plane, Eq. (33) takes the lower sign and is located at the lower half plane
Eq. (34) is located at upper half plane, Eq. (35) takes the lower sign and is located at
the lower half plane. But now Eq. (36) is located at upper half plane, Eq. (37) takes
the upper sign and is located at the lower half plane. The 3 regular poles are all on the
same half plane, thus in the naive limit of the light-front dynamics, one concludes that
the contribution is zero, but now we see that there are 3 “poles at infinity” on the lower
half plane.

reCliovn Df ye (-== /D)

0 o ®
e~ O
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Calculating their residues, we obtain

- - " 1 1 1
"o02) = Zrpipt /ﬂo ¢ {(1 “x—a)(a)(I-a)  @T-xa (- a) } '

(44)
Similarly for the region of x > 1.
vesfion o e, te)
o~ 0~ 97
o ® ©
We obtain
- /*wdx B 1 1 1
P07 = arprpr ), T—x—a)—a)i-a) (-xa (-
(45)

Now finally, adding the 4 time-ordered diagrams altogether, we reached agreement
between the “minus-minus” component form factor calculation and the covariant one.
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The double zero mode in terms of the time-ordered
diagrams
In Equal-Time dynamics, the 3 denominator can be written as

1

e e ~ —m8™Mm™M8 = -
plasit 559 [ﬁ-;ﬁ)‘im’fi{'jf(y—d‘—vﬁtic][t’uvvf’ﬂ’s]

) \ SR
T D) | R-peatew it K'—p? 4 -ertie
U Iy S E S
o) (s T poesic
»2(w;»|£\ ( k'twy =it l< - ti€

where
w0, = AT
W2 = (me+cp' -
Wi {wieey
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Light-Front limit: The rabbit and the magician's hat

@ Now, according to the above analysis, one would conclude that in LFD
the only possible contributions are coming from the region (b) and
region (c), i.e., the 2nd and the 6th diagrams in the previous page.

e Following the time-ordered rules, or doing the pole integrations (we
already see that they are the same), one obtains the sum of Egs. (17)
and (18) as the total of the minus-minus component of the transition
form factor, which, as we said before, is not correct.
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@ The

| 4

@ The

rabbit:

In our previous calculation in the interpolation form, we caught 2
additional poles for the region (b) of 0 < x <1 —«a < 1, 2 additional
poles for the region (c) of 0 <1 — a < x < 1. Also, we caught 3 poles
for the region (DZL) of x < 0, and 3 for the region (DZR) of x > 1.
And adding the contributions from all 4 time-ordered regions, we
achieved agreement between the minus-minus component calculation
and the covariant result.

hat:

However, in terms of the old-fashioned time-ordered diagrams, we see
that among the 8 diagrams, 4 are not possible (consider 0 < a < 1
without equal signs), 2 give no contributions, so only 2 are left, and the
agreement with the covariant result is lost.
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@ Even we disregard the contradicting conditions, i.e., we think any
combinations of the following can be satisfied simultaneously,

Whom (=X >0 Wan X<0

areq 1s 2 310y 15 3u

Whon [-x-% >0
|ch] s«

luk 15 14 U 1 1ol 3t 16 Yyl

0 hum l,f—ckéo Wy (X0 When X0
lveq IPIT. zvuj 16 m\ ij s 3
2k 5 U yub 15 3u

\‘w\‘& (6 \w

we find
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Future work

@ Find the rabbit in the hat.

Thanks for you attention!
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