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Scalar meson → γ∗γ∗ Transition Form Factor in 1+1-d
scalar model: Manifestly covariant calculation

Figure: One-loop covariant Feynman Diagrams that contribute to the S → γ∗γ∗

transition form factor

The total amplitude consists of these three Feynman diagrams, i.e., the
direct (D), crossed (C), and the seagull (S) diagrams, where p is the
momentum of the incident scalar meson, while q is the momentum of the
emitted photon. As a result of momentum conservation, q′ = p − q is the
momentum of the final state photon.
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From gauge invariance argument, we can know that the total amplitude
Γµν is of the form

Γµν = F (q2, q′2)
(
gµνq · q′ − q′µqν

)
, (1)

which satisfies both

qµ
(
gµνq · q′ − q′µqν

)
= 0 (2)

and
q′ν

(
gµνq · q′ − q′µqν

)
= 0, (3)

so that the form factor can be obtained by

F (q2, q′2) =
Γµν

gµνq · q′ − q′µqν
. (4)
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The amplitude Γµν is calculated as such, following the Feynman rules for
the scalar field theory.

Γµν =ΓµνD + ΓµνC + ΓµνS

=ie2gs

∫
d2k

(2π)2

{
(2p − 2k − q)µ (p − 2k − q)ν

((p − k − q)2 −m2) ((p − k)2 −m2) (k2 −m2)

+
(q − 2k)µ (p − 2k + q)ν

((p − k)2 −m2) (k2 −m2) ((q − k)2 −m2)

+
−2gµν

((p − k)2 −m2) (k2 −m2)

}
, (5)

where the coupling constant of the simple scalar model gs is fixed from the
normalization condition. For simplicity, we take all the intermediate scalar
particles’ mass to be m and their charge to be e, but it can be easily
generalized to unequal mass/charge cases. The initial scalar meson has
mass M.
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We finally obtain

F (q2, q′2) =
e2gs
4π

∫ 1

0
dx

∫ 1−x

0
dy(1− 2y)

(
1

∆2
1

+
1

∆2
2

)
, (6)

where

∆1 = x(x − 1)q2 + 2x(x + y − 1)q · q′ + (x + y)(x + y − 1)q′2 +m2, (7)

∆2 = x(x − 1)q′2 + 2x(x + y − 1)q · q′ + (x + y)(x + y − 1)q2 +m2. (8)

Doing the x and y integrations, we get the analytic formula for the
transition form factor,

F (q
2
, q

′2
) =

e2gs

4π
×

(2 − ω − γ′ − γ)

√
ω√

1−ω
tan−1

( √
ω√

1−ω

)
+ (γ − γ′ − ω)

√
1−γ′√
γ′ tan−1

 √
γ′√

1−γ′

 + (γ′ − γ − ω)

√
1−γ√
γ

tan−1

( √
γ√

1−γ

)

m4
[
4ωγ′γ + ω2 + (γ′ − γ)2 − 2ω(γ′ + γ)

] , (9)

where γ = q2

4m2 , γ
′ = q′2

4m2 , and ω = M2

4m2 .

5/39



Now, taking m = 0.25 GeV , M = 0.14 GeV , and normalizing the form
factor so that F (q2 = 0, q′2 = 0) = 1 (thus fixing gs), and taking the
value of q′2 = −0.1 GeV 2, we show below the numerical results of the
form factor as a function of q2. The agreement of the lines with the dots
show the agreement of our result with the Dispersion Relation (DR)
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Scalar meson → γ∗γ∗ Transition Form Factor in 1+1-d
scalar model: LFTO calculation

Figure: (Take the direct diagram as an example). The covariant diagram (a) is
sum of the two LF x+-ordered diagrams (b) and (c).

If one assumes each individual LFTO diagram contribution is of the gauge
invariant form, i.e. Γµνi = fi (q

2, q′2) (gµνq · q′ − q′µqν), one can obtain
the LFTO contributions by calculating just the plus-plus current:

f(b) =
Γ++
(b)

g++q·q′−q′+q+ , f(c) =
Γ++
(c)

g++q·q′−q′+q+ .
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However, this is not a meaningful representation of how much each LFTO
diagram contributes to the total form factor, since it depends on the
component. So actually,

f
(++)
(b) =

Γ++
(b)

g++q · q′ − q′+q+
, f

(++)
(c) =

Γ++
(c)

g++q · q′ − q′+q+
; (10)

f
(+−)
(b) =

Γ+−
(b)

g+−q · q′ − q′+q−
, f

(+−)
(c) =

Γ+−
(c)

g+−q · q′ − q′+q−
; (11)

f
(−+)
(b) =

Γ−+
(b)

g−+q · q′ − q′−q+
, f

(−+)
(c) =

Γ−+
(c)

g−+q · q′ − q′−q+
; (12)

f
(−−)
(b) =

Γ−−
(b)

g−−q · q′ − q′−q−
, f

(−−)
(c) =

Γ−−
(c)

g−−q · q′ − q′−q−
; (13)

and each of these are different.

8/39



Usually people just look at the “good current” only, and call f
(++)
(b) and

f
(++)
(c) the LFTO contributions to the form factor, or similarly, the DGLAP
and ERBL regions of GPD. So that is the motivation for us to look at
other components. We do this so-called “theoretical simulation” in this
simple model.

Last time I showed a lot of failed attempts to get the “−−” component,
including the method which I thought it worked, but turned out that also
failed. But now we finally obtained it. For real this time.
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Figure: LFTO diagram contributions to the transition form factor for all 4
components.
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Scalar meson → γ∗γ∗ Transition Form Factor in 1+1-d
scalar model: “−−” component of LFTO calculation
The minus minus component of the transition amplitude is

Γ−− = Γ−−
D + Γ−−

C

= ie2gs

∫
d2k

(2π)2
(2p − 2k − q)− (p − 2k − q)−

((p − k − q)2 −m2) ((p − k)2 −m2) (k2 −m2)

+ ie2gs

∫
d2k

(2π)2
(q − 2k)− (p − 2k + q)−

((p − k)2 −m2) (k2 −m2) ((q − k)2 −m2)
. (14)

There is no seagull term contribution for the −− current. Now plugging in the
kinematics, we get ( we just show the direct diagram calculation, the crossed diagram is
very much same calculation)

Γ−−
D =

ie2gs
4π2

∫
dk+

∫
dk−

(
M2

2p+
− 2k− +

q′2

2(1− α)p+

)(
−2k− +

q′2

2(1− α)p+

)
·
(
2(p − k − q)+(p − k − q)− −m2

)−1 (
2(p − k)+(p − k)− −m2

)−1

·
(
2k+k− −m2

)−1

. (15)
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Now let us do the integration
∫
dk−. There

are 3 poles

k−
1 = p− − q− − m2 − iε

2(p − k − q)+

k−
2 = p− − m2 − iε

2(p − k)+

k−
3 =

m2 − iε

2k+
(16)

where the k−
2 pole is located at the upper half plane, k−

3 pole is at lower half plane,
while k−

1 pole depending on the sign of 1− x − α, when 1− x − α > 0, it is at upper
plane, and we call this region (b). For region (b), we enclose the contour for lower half
plane and catch pole 3. When 1− x − α < 0, it is at lower plane, and we call this region
(c). For region (c), we enclose the contour for upper half plane and catch pole 2.
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Calculating the pole residue, we get

Γ−−
D(b) =

ie2gs
4π2

(−2πi)

∫
dk+

(
M2

2p+
+

q′2

2(1− α)p+
− 2k−

3

)(
q′2

2(1− α)p+
− 2k−

3

)
·
[
2 (p − k − q)+ 2 (p − k)+ 2k+ (

k−
3 − k−

1

) (
k−
3 − k−

2

)]−1

=
e2gs
2π

p+

∫ 1−α

0

dx

(
M2

2p+
+

q′2

2(1− α)p+
− m2

xp+

)(
q′2

2(1− α)p+
− m2

xp+

)
·
[
2p+ (1− x − α) 2p+ (1− x) 2p+x

· 1

2p+

(
m2

x
− q′2

1− α
+

m2

1− x − α

)
1

2p+

(
m2

x
−M2 +

m2

1− x

)]−1

=
e2gs

4πp+p+

∫ 1−α

0

dx

(
M2

2
+

q′2

2(1− α)
− m2

x

)(
q′2

2(1− α)
− m2

x

)
·
[
(1− x − α)(1− x)x

(
m2

x
+

m2

1− x − α
− q′2

1− α

)(
m2

x
+

m2

1− x
−M2

)]−1

(17)

13/39



and

Γ−−
D(c) =

ie2gs
4π2

(2πi)

∫
dk+

(
M2

2p+
+

q′2

2(1− α)p+
− 2k−

2

)(
q′2

2(1− α)p+
− 2k−

2

)
·
[
2 (p − k − q)+ 2 (p − k)+ 2k+ (

k−
2 − k−

1

) (
k−
2 − k−

3

)]−1

=
−e2gs
2π

p+

∫ 1

1−α

dx

(
M2

2p+
+

q′2

2(1− α)p+
− M2

p+
+

m2

(1− x)p+

)
·
(

q′2

2(1− α)p+
− M2

p+
+

m2

(1− x)p+

)
·
[
2p+ (1− x − α) 2p+ (1− x) 2p+x

· 1

2p+

(
− m2

1− x
+M2 − q′2

1− α
+

m2

1− x − α

)
1

2p+

(
M2 − m2

1− x
− m2

x

)]−1

=
e2gs

4πp+p+

∫ 1

1−α

dx

(
q′2

2(1− α)
− M2

2
+

m2

1− x

)(
q′2

2(1− α)
−M2 +

m2

1− x

)
·
[
(1− x − α) (1− x) x

(
m2

1− x − α
− m2

1− x
+M2 − q′2

1− α

)(
m2

1− x
+

m2

x
−M2

)]−1

(18)
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However, if one adds all the LFTO contributions, one finds that it does not agree with
the covariant result.

Upon inspection, we realize that for this “minus-minus” component case, there is
enough power of k− on the numerator for the contour integration to have contribution
from the arc. Subtracting the arc from the residue gives

Γ−−
D(b) =

e2gs
4πp+p+

∫ 1−α

0

dx

{(
M2

2
+

q′2

2(1− α)
− m2

x

)(
q′2

2(1− α)
− m2

x

)
·
[
(1− x − α)(1− x)x

(
m2

x
+

m2

1− x − α
− q′2

1− α

)(
m2

x
+

m2

1− x
−M2

)]−1

− 1

2(1− x − α)(1− x)x

}
, (19)

and

Γ−−
D(c) =

e2gs
4πp+p+

∫ 1

1−α

dx

{(
q′2

2(1− α)
− M2

2
+

m2

1− x

)(
q′2

2(1− α)
−M2 +

m2

1− x

)
·
[
(1− x − α) (1− x) x

(
m2

1− x − α
− m2

1− x
+M2 − q′2

1− α

)(
m2

1− x
+

m2

x
−M2

)]−1

+
1

2(1− x − α)(1− x)x

}
. (20)

But, this still results in disagreement between the “minus-minus” component calculation
and the covariant one.
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Interpolating between the IFD and LFD

To quantify the contributions at k− → ∞ accurately, we introduce the
interpolation method.[

x +̂

x −̂

]
=

[
cos δ sin δ
sin δ − cos δ

] [
x0

x1

]
, (21)

in which the interpolation angle is allowed to run from 0 through 45◦,
0 ≤ δ ≤ π

4 . The lower index variables x+̂ and x−̂ are related to the upper

index variables as x+̂ = g+̂µ̂x
µ̂ = Cx +̂ + Sx −̂ and

x−̂ = g−̂µ̂x
µ̂ = −Cx −̂ + Sx +̂, denoting C = cos 2δ and S = sin 2δ and

realizing g+̂+̂ = −g−̂−̂ = cos 2δ = C and g+̂−̂ = g−̂+̂ = sin 2δ = S. All the
indices with the hat notation signify the variables with the interpolation
angle δ. For the limit δ → 0 we have x +̂ = x0 and x −̂ = −x1 so that we
recover usual space-time coordinates although the z-axis is inverted while
for the other extreme limit, δ → π

4 , we have x ±̂ = (x0 ± x1)/
√
2 = x±

which leads to the standard light-front coordinates.
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In the interpolation form, the 3 denominators of Eq. (15) can be rewritten
as

D1 = C
(
p+̂ − k+̂ − q+̂

)2
+ 2S

(
p+̂ − k+̂ − q+̂

) (
p−̂ − k−̂ − q−̂

)
− C

(
p−̂ − k−̂ − q−̂

)2 −m2 + iε, (22)

D2 = C
(
p+̂ − k+̂

)2
+ 2S

(
p+̂ − k+̂

) (
p−̂ − k−̂

)
− C

(
p−̂ − k−̂

)2 −m2 + iε,
(23)

and

D3 = Ck2
+̂
+ 2Sk+̂k−̂ − Ck2−̂ −m2 + iε. (24)
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There are 6 poles in total

k+̂1,1′ = p+̂ − q+̂ +
S
C
(p−̂ − k−̂ − q−̂)∓

ω1

C
± iε (25)

k+̂2,2′ = p+̂ +
S
C
(p−̂ − k−̂)∓

ω2

C
± iε (26)

k+̂3,3′ = − S
C
k−̂ ± ω3

C
∓ iε (27)

where

ω1 =
√

(p−̂ − k−̂ − q−̂)
2 + Cm2 (28)

ω2 =
√
(p−̂ − k−̂)

2 + Cm2 (29)

ω3 =
√

k2−̂ + Cm2 (30)
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In the C → 0 limit, in each pair of the poles, one of them goes to infinity,
the other goes to the light-front poles, Eq. (16).
We know the behavior of solutions to the quadratic equation

ax2 + bx + c = 0 (31)

depends on the sign of b.
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Keeping the limit to the light-front in mind, we keep the relevant terms in
the pole values at infinity taking limits such as S → 1, k−̂ → k+ etc.
already, while for the regular poles we substitute Eq. (16). The 6 poles
become

k−1reg = p− − q− − m2 − iε

2(p − k − q)+
(32)

k−1inf =
p+ − k+ − q+

C
∓ |p+ − k+ − q+|

C
± iε (33)

k−2reg = p− − m2 − iε

2(p − k)+
(34)

k−2inf =
p+ − k+

C
∓ |p+ − k+|

C
± iε (35)

k−3reg =
m2 − iε

2k+
(36)

k−3inf = −k+

C
± |k+|

C
∓ iε. (37)
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For the case of (b) time-ordering, we have 0 < x < 1− α < 1. So, Eq.
(32) is located at upper half plane, Eq. (33) takes the lower sign and is
located at the lower half plane. Eq. (34) is located at upper half plane, Eq.
(35) takes the lower sign and is located at the lower half plane. Eq. (36) is
located at lower half plane, Eq. (37) takes the lower sign and is located at
the upper half plane. Now, we actually have 3 poles located at the lower
half plane, instead of just one pole in the naive light-front calculation.
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Let us now calculate the residues of k−1inf and k−2inf . The residue of k−1inf is

4

(
2(p

+ − k
+ − q

+
) + O(C)

)
2

(
2(p+ − k+ − q+) + O(C)

) ((
2(p+ − k+ − q+) + O(C)

)
2 + 2(p+ − k+)

(
−2(p+ − k+ − q+)

)
+ O(C)

) ((
2(p+ − k+ − q+) + O(C)

)
2 + 2k+

(
2(p+ − k+ − q+)

)
+ O(C)

)
(38)

=
4

2(p+ − k+ − q+)(−2q+)(2(p+ − q+))
(39)

The residue of k−2inf is

4
(
2(p+ − k+ ) + O(C)

)2
(
2(p+ − k+ ) + O(C)

) ((
2(p+ − k+ ) + O(C)

)
2 + 2(p+ − k+ − q+ )

(
−2(p+ − k+ )

)
+ O(C)

) ((
2(p+ − k+ ) + O(C)

)
2 + 2k+

(
2(p+ − k+ )

)
+ O(C)

) (40)

=
4

2(p+ − k+)(2q+)(2p+)
. (41)
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Adding the residues from all 3 poles on the lower half plane, we get

Γ−−
D(b) =

e2gs
4πp+p+

∫ 1−α

0

dx

{(
M2

2
+

q′2

2(1− α)
− m2

x

)(
q′2

2(1− α)
− m2

x

)
·
[
(1− x − α)(1− x)x

(
m2

x
+

m2

1− x − α
− q′2

1− α

)(
m2

x
+

m2

1− x
−M2

)]−1

+
1

(1− x − α)(−α)(1− α)
+

1

(1− x)α

}
. (42)
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Now similarly, for the case of (c) time-ordering, we have
0 < 1− α < x < 1. So, Eq. (32) is located at lower half plane, Eq. (33)
takes the upper sign and is located at the upper half plane. Eq. (34) is
still located at upper half plane, Eq. (35) still takes the lower sign and is
located at the lower half plane. Eq. (36) is still located at lower half plane,
Eq. (37) still takes the lower sign and is located at the upper half plane.
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Now, in addition to the regular pole residue, we need the contributions
from the 2 poles at infinity: k−1inf and k−3inf . Similar to the (b)
time-ordering case, we calculate the residues from these 2 poles at infinity
and add them to the regular pole residue, which is the naive answer we
already obtained on the light-front. The residues from all 3 poles on the
upper half plane gives

Γ−−
D(c) =

e2gs
4πp+p+

∫ 1

1−α

dx

{(
q′2

2(1− α)
− M2

2
+

m2

1− x

)(
q′2

2(1− α)
−M2 +

m2

1− x

)
·
[
(1− x − α) (1− x) x

(
m2

1− x − α
− m2

1− x
+M2 − q′2

1− α

)(
m2

1− x
+

m2

x
−M2

)]−1

− 1

(1− x − α)(−α)(1− α)
− 1

(−x)(1− α)

}
. (43)
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Now, adding these two time-ordered contributions still does not give agreement to the
covariant result. That is because we have forgotten the regions of x < 0 and x > 1.
When C ̸= 0, x is not limited to the region [0, 1], and these two regions outside of [0, 1]
do give contributions.
When x < 0 (and thus necessarily < 1− α because α ∈ [0, 1]), Eq. (32) is located at
upper half plane, Eq. (33) takes the lower sign and is located at the lower half plane.
Eq. (34) is located at upper half plane, Eq. (35) takes the lower sign and is located at
the lower half plane. But now Eq. (36) is located at upper half plane, Eq. (37) takes
the upper sign and is located at the lower half plane. The 3 regular poles are all on the
same half plane, thus in the naive limit of the light-front dynamics, one concludes that
the contribution is zero, but now we see that there are 3 “poles at infinity” on the lower
half plane.
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Calculating their residues, we obtain

Γ−−
D(DZL) =

e2gs
4πp+p+

∫ 0

−∞
dx

{
1

(1− x − α)(−α)(1− α)
+

1

(1− x)α
+

1

(−x)(1− α)

}
.

(44)

Similarly for the region of x > 1.

We obtain

Γ−−
D(DZR) =

e2gs
4πp+p+

∫ +∞

1

dx

{
− 1

(1− x − α)(−α)(1− α)
− 1

(1− x)α
− 1

(−x)(1− α)

}
.

(45)

Now finally, adding the 4 time-ordered diagrams altogether, we reached agreement
between the “minus-minus” component form factor calculation and the covariant one.
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The double zero mode in terms of the time-ordered
diagrams
In Equal-Time dynamics, the 3 denominator can be written as

where
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Light-Front limit: The rabbit and the magician’s hat

Now, according to the above analysis, one would conclude that in LFD
the only possible contributions are coming from the region (b) and
region (c), i.e., the 2nd and the 6th diagrams in the previous page.

Following the time-ordered rules, or doing the pole integrations (we
already see that they are the same), one obtains the sum of Eqs. (17)
and (18) as the total of the minus-minus component of the transition
form factor, which, as we said before, is not correct.
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The rabbit:
▶ In our previous calculation in the interpolation form, we caught 2

additional poles for the region (b) of 0 < x < 1− α < 1, 2 additional
poles for the region (c) of 0 < 1− α < x < 1. Also, we caught 3 poles
for the region (DZL) of x < 0, and 3 for the region (DZR) of x > 1.
And adding the contributions from all 4 time-ordered regions, we
achieved agreement between the minus-minus component calculation
and the covariant result.

The hat:
▶ However, in terms of the old-fashioned time-ordered diagrams, we see

that among the 8 diagrams, 4 are not possible (consider 0 < α < 1
without equal signs), 2 give no contributions, so only 2 are left, and the
agreement with the covariant result is lost.
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Even we disregard the contradicting conditions, i.e., we think any
combinations of the following can be satisfied simultaneously,

we find
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Future work

Find the rabbit in the hat.

Thanks for you attention!
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