TMDs at high energy

Patrick Barry
NCSU Group Meeting, June 16th, 2023

3D structures of hadrons

- Even more challenging is the 3d structure through GPDs and TMDs

Unpolarized TMD PDF

$$
\begin{gathered}
\tilde{f}_{q / \mathcal{N}}\left(x, b_{T}\right)=\int \frac{\mathrm{d} b^{-}}{4 \pi} e^{-i x P^{+} b^{-}} \operatorname{Tr}\left[\langle\mathcal{N}| \bar{\psi}_{q}(b) \gamma^{+} \mathcal{W}(b, 0) \psi_{q}(0)|\mathcal{N}\rangle\right] \\
b \equiv\left(b^{-}, 0^{+}, \boldsymbol{b}_{T}\right)
\end{gathered}
$$

- $\boldsymbol{b}_{\boldsymbol{T}}$ is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, $\boldsymbol{k}_{\boldsymbol{T}}$
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: $\tilde{f}_{q / \mathcal{N}}\left(x, b_{T}\right) \rightarrow \tilde{f}_{q / \mathcal{N}}\left(x, b_{T} ; \mu, \zeta\right)$

Factorization for low $-q_{T}$ Drell-Yan

- Like collinear observable, a hard part with two functions that describe structure of beam and target
- So called " W "-term, valid only at low- q_{T}

$$
\begin{aligned}
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} \tau \mathrm{~d} Y \mathrm{~d} q_{T}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 \tau S^{2}} & \sum_{q} H_{q \bar{q}}\left(Q^{2}, \mu\right) \int \mathrm{d}^{2} b_{T} e^{i b_{T} \cdot q_{T}} \\
& \times \tilde{f}_{q / \pi}\left(x_{\pi}, b_{T}, \mu, Q^{2}\right) \tilde{f}_{\bar{q} / A}\left(x_{A}, b_{T}, \mu, Q^{2}\right),
\end{aligned}
$$

Small b_{T} operator product expansion

- At small b_{T}, the TMD PDF can be described in terms of its OPE:

$$
\tilde{f}_{q / \mathcal{N}}\left(x, b_{T} ; \mu, \zeta_{F}\right)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} \tilde{\mathcal{C}}_{q / j}\left(x / \xi, b_{T} ; \mu, \zeta_{F}\right) f_{q / \mathcal{N}}(\xi ; \mu)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} b_{T}\right)^{a}\right)
$$

- where \tilde{C} are the Wilson coefficients, and $f_{q / \mathcal{N}}$ is the collinear PDF
- Breaks down when b_{T} gets large

b_{*} prescription

- A common approach to regulating large b_{T} behavior

$$
\mathbf{b}_{*}\left(\mathbf{b}_{T}\right) \equiv \frac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2} / b_{\text {max }}^{2}}} \cdot \quad \begin{aligned}
& \text { Must choose an appropriate value; } \\
& \text { a transition from perturbative to } \\
& \text { non-perturbative physics }
\end{aligned}
$$

- At small $b_{T}, b_{*}\left(b_{T}\right)=b_{T}$
- At large $b_{T}, b_{*}\left(b_{T}\right)=b_{\text {max }}$

Introduction of non-perturbative functions

- Because $b_{*} \neq b_{T}$, have to non-perturbatively describe large b_{T} behavior

Completely general independent of quark, hadron, PDF or FF

$$
g_{K}\left(b_{T} ; b_{\max }\right)=-\tilde{K}\left(b_{T}, \mu\right)+\tilde{K}\left(b_{*}, \mu\right)
$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$
e^{-g_{q / \mathcal{N}(A)}\left(x, b_{T}\right)}=\frac{\tilde{f}_{q / \mathcal{N}(A)}\left(x, b_{T} ; \mu, \zeta\right)}{\tilde{f}_{q / \mathcal{N}(A)}\left(x, b_{*} ; \mu, \zeta\right)} e^{g_{K}\left(b_{T} ; b_{\max }\right) \log \left(\sqrt{\zeta} / Q_{0}\right)}
$$

TMD PDF within the b_{*} prescription

$$
\mathbf{b}_{*}\left(\mathbf{b}_{T}\right) \equiv \frac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} .
$$

Low- b_{T} : perturbative high- b_{T} : non-perturbative

$$
\begin{aligned}
& \tilde{f}_{q / \mathcal{N}(A)}\left(x, b_{T}, \mu_{Q}, Q^{2}\right)=(C \otimes f)_{q / \mathcal{N}(A)}\left(x ; b_{*}\right) \\
& \times \exp \left\{-g_{q / \mathcal{N}(A)}\left(x, b_{T}\right)-g_{K}\left(b_{T}\right) \ln \frac{Q}{Q_{0}}-S\left(b_{*}, Q_{0}, Q, \mu_{Q}\right)\right\}
\end{aligned}
$$

Relates the TMD at

$$
\text { small- } b_{T} \text { to the collinear }
$$

PDF

$$
\Rightarrow \text { TMD is sensitive to }
$$

collinear PDFs
$g_{q / \mathcal{N}(A)}$: intrinsic non-perturbative structure of the TMD
g_{K} : universal non-perturbative Collins-Soper kernel

Controls the perturbative

 evolution of the TMD
MAP parametrization

- A recent work from the MAP collaboration (Phys. Rev. D 107, 014014 (2023).) used a complicated form for the non-perturbative function

$$
\begin{gather*}
f_{1 N P}\left(x, \boldsymbol{b}_{T}^{2} ; \zeta, Q_{0}\right)=\frac{g_{1}(x) e^{-g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda^{2} g_{1 B}^{2}(x)\left[1-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right] e^{-g_{1 B}(x) \frac{b_{T}^{2}}{4}}+\lambda_{2}^{2} g_{1 C}(x) e^{-g_{1 C}(x) \frac{b_{T}^{2}}{4}}}{g_{1}(x)+\lambda^{2} g_{1 B}^{2}(x)+\lambda_{2}^{2} g_{1 C}(x)}\left[\frac{\zeta}{Q_{0}^{2}}\right]^{-g_{K}\left(\boldsymbol{b}_{T}^{2}\right) / 2}, \\
g_{\{1,1 B, 1 C\}}(x)=N_{\{1,1 B, 1 C\}} \frac{x^{\sigma_{\{1,2,3\}}(1-x)^{\alpha_{\{1,2,3\}}^{2}}} \hat{x}^{\sigma_{\{1,2,3\}}(1-\hat{x})^{\alpha_{\{1,2,3\}}}},}{} \quad g_{K}\left(\boldsymbol{b}_{T}^{2}\right)=-g_{2}^{2} \frac{\boldsymbol{b}_{T}^{2}}{2} \quad \text { Universal CS kernel } \tag{38}
\end{gather*}
$$

- 11 free parameters for each hadron! (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)

Resulting TMD PDFs of proton and pion

Extracted pion PDFs

- The small- q_{T} data do not constrain much the PDFs

What about LHC energies?

- Many studies have extracted TMDs from these data:
- Fixed-target energies: sensitive to non-perturbative TMD structures
- Large portion of \widetilde{W} spectrum in large- b_{T} region
- LHC energies: sensitive to perturbative calculations
- Have opportunity to study collinear distributions

High energy PDF uncertainties

- From Bury, et al. JHEP 118 (2022).

Moos, Scimemi, Vladimirov, Zurita, arXiv:2305.07473

- Studies about the uncertainties of the PDFs relative to data

Trust perturbative region

- Method to keep the \widetilde{W} term unaltered by b_{*} mechanism up to a certain $b_{\text {max }}$
- Non-perturbative effects kick in at $b_{\text {max }}$
- Smooth function as 1st and 2 nd derivatives are continuous at $b_{\text {max }}$

$$
\begin{aligned}
\widetilde{W}\left(b_{T}, x_{a}, x_{b}, Q\right) & =\widetilde{W}_{\mathrm{pert}}\left(b_{T}, x_{a}, x_{b}, Q\right) \text { for } \quad b_{T}<b_{\max } \\
& =\widetilde{W}_{\mathrm{pert}}\left(b_{\max }, x_{a}, x_{b}, Q\right) f_{\mathrm{NP}}\left(b_{T}, b_{\max }, x_{a}, x_{b}\right) \text { for } b_{T}>b_{\max }
\end{aligned}
$$

Nonperturbative form

- Instead of 11 free parameters for the MAP parametrization, we have a few

$$
f_{\mathrm{NP}}\left(b_{T}, b_{\max }, x_{a}, x_{b}\right)=\exp \left\{-\log \left(\frac{Q^{2} b_{\max }^{2}}{C_{1}^{2}}\right)\left[g_{1}\left(\left(b_{T}^{2}\right)^{\alpha}-\left(b_{\max }^{2}\right)^{\alpha}\right)+g_{2}\left(b_{T}^{2}-b_{\max }^{2}\right)\right]-\bar{g}_{2}\left(b_{T}^{2}-b_{\max }^{2}\right)\right\}
$$

- Structure such that the g_{1} term is reminiscent of a logarithm, which is predicted from perturbative calculations
- \bar{g}_{2} term is the "intrinsic" transverse momentum component (in principle, some flexibility can be had here)

Solve for g_{1} and α by differentiating

- Take first and second derivatives and solve analytically on the RHS and numerically on the LHS
- $F_{a}^{\text {OPE }}$ is like \widetilde{W}
- R_{a}^{NP} is like f_{NP}

$$
\begin{aligned}
&\left.\frac{\partial F_{a}^{O P E}\left(b_{T}\right)}{\partial b_{T}}\right|_{b_{\text {max }}}=\left.\frac{\partial\left(F_{a}^{O P E}\left(b_{\text {max }}\right) R_{a}^{N P}\left(b_{T}\right)\right)}{\partial b_{T}}\right|_{b_{\text {max }}} \\
&=\left.F_{a}^{O P E}\left(b_{\text {max }}\right) \frac{\partial R_{a}^{N P}\left(b_{T}\right)}{\partial b_{T}}\right|_{b_{\text {max }} .} \\
& \frac{\partial R_{a}^{N P}\left(b_{T}\right)}{\partial b_{T}}=R_{a}^{N P}\left(b_{T}\right)\left\{-\log \left(\frac{Q^{2}}{\mu_{b}^{2}}\right)\left[Z_{\alpha} g_{1} b_{T}^{2 \alpha-1}+2 g_{2} b_{T}\right]\right. \\
&\left.-g_{J}^{(1)}\right\} .
\end{aligned}
$$

Solve for g_{1} and α by differentiating

$$
g_{1}=\frac{\frac{-\left[\frac{F^{(1)}\left(b_{\text {max }}\right)}{F\left(b_{\text {max }}\right)}+g_{J}^{(1)}\left(b_{\text {max }}\right)\right]}{\log \left(\frac{\alpha^{2}}{\mu_{b_{\text {max }}^{2}}^{2}}\right)}}{2 \alpha b_{\max }^{2 \alpha-1}}
$$

- Result from taking first derivative $\left(F^{(1)}\right)$

Solve for g_{1} and α by differentiating

$$
\left.\alpha=\frac{1}{2} \frac{b_{\max }\left(\frac{F^{(2)}}{F}-\left(\frac{F^{(1)}}{F}\right)^{2}+g_{J}^{(2)}+4 g_{2} \log \left(\frac{Q^{2}}{\mu_{k_{x}^{2}}^{2}}\right)\right)+\left(\frac{F^{(1)}}{F}+g_{J}^{(1)}\right)}{\frac{F^{(1)}}{F}+g_{J}^{(1)}+2 g_{2} b_{\max } \log \frac{Q^{2}}{\mu_{b=1}^{2}}}\right]
$$

- Result from taking second derivative $\left(F^{(2)}\right)$

Examples of g_{1} and α

- Solving for them in the codes for various Q values as a function of y

Examples of continuity

- Different rapidity values for different curves

Observables

- The factorization goes as follows

$$
\begin{aligned}
& \frac{d \sigma}{d y d Q^{2} d q_{T}^{2}}=\frac{4 \pi^{2} \alpha_{\mathrm{em}}^{2}}{9 Q^{2} s} \mathcal{P} \sum_{q} c_{q}(Q) H_{q}\left(Q, \mu_{Q}\right) \int \frac{d^{2} \mathbf{b}_{T}}{(2 \pi)^{2}} e^{i \mathbf{q}_{T} \cdot \mathbf{b}_{T}} \\
& \times \tilde{f}_{q / p}\left(x_{a}, b_{T} ; Q, Q^{2}\right) \tilde{f}_{\bar{q} / \bar{p}}\left(x_{b}, b_{T} ; Q, Q^{2}\right)
\end{aligned}
$$

- \mathcal{P} is a fiducial factor, which limits the phase space of the detected leptons

Data observable - techniques

- Highly integrated observable

Fourier transform from previous slide

$$
\frac{d \sigma}{d p_{T}}=\frac{1}{\Delta p_{T}} \int d p_{T} \int d Q \int d y \mathcal{P}\left(Q, y, p_{T}\right) \int d b_{T} b_{T} J_{0}\left(b_{T} p_{T}\right) \widetilde{W}\left(Q, y, b_{T}\right)
$$

- 2 steps of parallelization:

1. Compute \widetilde{W} as a function of predetermined Q, y, b_{T}, where b_{T} is interpolated
2. Perform the Fourier transform for predetermined Q, y

Data observable - techniques

- Highly integrated observable

$$
\frac{d \sigma}{d p_{T}}=\frac{1}{\Delta p_{T}} \int d p_{T} \int d Q \int d y \mathcal{P}\left(Q, y, p_{T}\right) \int d b_{T} b_{T} J_{0}\left(b_{T} p_{T}\right) \widetilde{W}\left(Q, y, b_{T}\right)
$$

- Have precomputed fiducial factors that are functions of Q, y, p_{T}
- Interpolate over a 2d grid in (Q, y) for each p_{T}
- Perform (very quickly) Gaussian quadrature over the interpolated sheet
- Pick a few p_{T} points for bin averaging integrand

Preliminary fit to ATLAS and LHCb

- Two free nonperturbative TMD parameters from fit
- Fix the collinear PDF
- $b_{\text {max }}=$
$0.3 \mathrm{GeV}^{-1}$

Uncertainties from JAM PDFs only

- Bands come from varying only the collinear PDFs
- High precision in ATLAS and LHCb data indicate potential constraining power

$q_{T}(\mathrm{GeV})$

$q_{T}(\mathrm{GeV})$
$q_{T}(\mathrm{GeV})$

Individual quarks

- Green: full contributions
- Red (looks purple): contribution when u in beam PDF and \bar{u} in target
- Blue: corresponding $d \bar{d}$

Contributions from each experiments

- Looking at percentage coming from specific quark channels

Small q_{T}

- Quite successful at small- q_{T} !

Large q_{T}

- Still in the " W " region, but not as good

Outlook

- Apply this matching on the TMDs themselves
- Finalize fits and perform simultaneous extractions of collinear and TMD PDFs
- Examine the impact the low- q_{T} data have on the collinear PDFs
- Perform simultaneous analysis including W-boson production and analyze its mass

