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3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs
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Unpolarized TMD PDF

• 𝒃𝑻 is the Fourier conjugate to the intrinsic transverse momentum of 
quarks in the hadron, 𝒌𝑻
• We can learn about the coordinate space correlations of quark fields 

in hadrons
• Modification needed for UV and rapidity divergences; acquire 

regulators: 
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Factorization for low-𝑞! Drell-Yan

• Like collinear observable, a hard part with two functions that describe 
structure of beam and target
• So called “𝑊”-term, valid only at low-𝑞"
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Small 𝑏! operator product expansion

• At small 𝑏", the TMD PDF can be described in terms of its OPE:

• where &𝐶 are the Wilson coefficients, and 𝑓#/𝒩 is the collinear PDF
• Breaks down when 𝑏" gets large
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𝑏∗ prescription

• A common approach to regulating large 𝑏" behavior

• At small 𝑏", 𝑏∗ 𝑏" = 𝑏"
• At large 𝑏" , 𝑏∗ 𝑏" = 𝑏'()
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Must choose an appropriate value; 
a transition from perturbative to 
non-perturbative physics



Introduction of non-perturbative functions

• Because 𝑏∗ ≠ 𝑏", have to non-perturbatively describe large 𝑏"
behavior

Completely general –
independent of quark, 

hadron, PDF or FF

Non-perturbative function 
dependent in principle on 

flavor, hadron, etc.
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TMD PDF within the  𝑏∗ prescription
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Low-𝑏!: perturbative
high-𝑏!: non-perturbative

Relates the TMD at 
small-𝑏! to the collinear
PDF
⇒ TMD is sensitive to 
collinear PDFs

𝑔"/𝒩(&): intrinsic non-perturbative structure of 
the TMD
𝑔(: universal non-perturbative Collins-Soper 
kernel

Controls the perturbative 
evolution of the TMD

Collins, Soper, Sterman, NPB 250, 199 (1985).



MAP parametrization

• A recent work from the MAP collaboration (Phys. Rev. D 107, 014014 
(2023).) used a complicated form for the non-perturbative function

• 11 free parameters for each hadron! (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter) 9

Universal CS kernel



Resulting TMD PDFs 
of proton and pion

• Broadening appearing 
as 𝑥 increases
• Up quark in pion is 

narrower than up 
quark in proton 
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Extracted pion PDFs

• The small-𝑞" data do not constrain much the PDFs
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What about LHC energies?

• Many studies have extracted TMDs from these data:
• Fixed-target energies: sensitive to non-perturbative TMD structures
• Large portion of !𝑊 spectrum in large-𝑏' region

• LHC energies: sensitive to perturbative calculations
• Have opportunity to study collinear distributions
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• From Bury, et al. JHEP 118 (2022).

• Studies about the uncertainties of the PDFs relative to data

High energy PDF uncertainties
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Moos, Scimemi, Vladimirov, Zurita, arXiv:2305.07473



Trust perturbative region

• Method to keep the -𝑊 term unaltered by 𝑏∗ mechanism up to a 
certain 𝑏'()
• Non-perturbative effects kick in at 𝑏'()
• Smooth function as 1st and 2nd derivatives are continuous at 𝑏'()
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Qiu, Zhang, PRD 63, 114011 (2001).



Nonperturbative form

• Instead of 11 free parameters for the MAP parametrization, we have a 
few

• Structure such that the 𝑔- term is reminiscent of a logarithm, which is 
predicted from perturbative calculations
• �̅�. term is the “intrinsic” transverse momentum component (in 

principle, some flexibility can be had here)
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Solve for 𝑔# and 𝛼 by differentiating

• Take first and second derivatives and solve analytically on the RHS 
and numerically on the LHS
• 𝐹/012 is like -𝑊
• 𝑅/31 is like 𝑓31
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Solve for 𝑔# and 𝛼 by differentiating

• Result from taking first derivative (𝐹(-))
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Solve for 𝑔# and 𝛼 by differentiating

• Result from taking second derivative (𝐹(.))
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Examples of 𝑔# and 𝛼

• Solving for them in the codes for various 𝑄 values as a function of 𝑦
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Examples of continuity

• Different rapidity values for different curves

First derivative
Second derivative
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Observables

• The factorization goes as follows

• 𝒫 is a fiducial factor, which limits the phase space of the detected 
leptons
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Data observable  - techniques

• Highly integrated observable

• 2 steps of parallelization:
1. Compute !𝑊 as a function of predetermined 𝑄, 𝑦, 𝑏', where 𝑏' is 

interpolated
2. Perform the Fourier transform for predetermined 𝑄, 𝑦

Fourier transform 
from previous slide
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Data observable - techniques

• Highly integrated observable

• Have precomputed fiducial factors that are functions of 𝑄, 𝑦, 𝑝"
• Interpolate over a 2d grid in (𝑄, 𝑦) for each 𝑝"
• Perform (very quickly) Gaussian quadrature over the interpolated 

sheet
• Pick a few 𝑝" points for bin averaging integrand
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Preliminary fit to ATLAS and LHCb

• Two free non-
perturbative 
TMD 
parameters 
from fit
• Fix the collinear 

PDF
• 𝑏'() =
0.3 GeV6-
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Uncertainties from JAM PDFs only

• Bands come 
from varying 
only the 
collinear PDFs
• High precision in 

ATLAS and LHCb
data indicate 
potential 
constraining 
power
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Individual quarks

• Green: full 
contributions
• Red (looks purple): 

contribution when 𝑢 in 
beam PDF and =𝑢 in 
target
• Blue: corresponding 
𝑑�̅�
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Contributions from each experiments

• Looking at percentage 
coming from specific 
quark channels

27

2 4 6 8 10 12 14
qT (GeV)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

dæ
/d

q T
| qq̄

/d
æ
/d

q T
| to

t
(%

)

ATLAS 8 TeV

0.0 < |y| < 0.4
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Small 𝑞!
• Quite successful at 

small-𝑞"!
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Large 𝑞!
• Still in the “𝑊” 

region, but not as 
good
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Outlook

• Apply this matching on the TMDs themselves
• Finalize fits and perform simultaneous extractions of collinear and 

TMD PDFs
• Examine the impact the low-𝑞' data have on the collinear PDFs

• Perform simultaneous analysis including 𝑊-boson production and 
analyze its mass
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