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Parton Model

= In hadrons, the strong dynamics of QCD take place at the scale Agcp ~ 200 MeV.

= Perturbation theory is not applicable, so other strategies to predict observables are necessary.

= The parton model embeds the non-perturbative behavior in parton distribution functions
(PDFs) and fragmentation functions (FFs).

"In QCD, partons are identified with the quarks, antiquarks, and gluons inside of hadrons.




QCD Factorization

= The parton model allows for “factorization” of cross sections.

=, Separate physics taking place at different scales.
= (a) Process independent non-perturbative contributions given by PDFs and FFs.

= (b) Perturbatively calculable short-distance partonic cross sections ().

= (a) can be extracted from experimental data, calculated on the lattice, or computed using
effective field theories.
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TMDs

" Transverse Momentum Dependent (TMD) PDFs and FFs probe the 3D structure of hadrons.

=*TMDs are distribution densities to find a quark or a gluon carrying longitudinal momentum
fraction (z) and transverse momentum (k) with respect to their bound state.

= They provide correlations between hadron spin and parton polarization, in addition to the
motion of the parton. Quark
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SIDIS

= Semi-Inclusive Deep Inelastic Scattering (SIDIS) will be a major focus of the upcoming Electron-
lon Collider.

e+p—e+H+ X

= Electron scatters off a proton and produces hadrons which are B
detected in the final state. B e
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Kinematics

= Process can be written in terms of standard DIS variables.
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Why J /) Production?

= The large masses the heavy quarks allow for the non-perturbative dynamics to be studied using
Non-Relativistic QCD (NRQCD).

= Something we can actually calculate!

= J/¢ production can be identified with the production of a cec.
= Non-perturbative (hadronization) effects happen at longer distances.

= Offers one of the few direct probes of the gluon content in the proton
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NRQCD

= Non-Relativistic QCD is an effective field theory of QCD where heavy quarks are treated as non-
relativistic, but gluons and light-quarks are left as the fully relativistic fields.

= Can be derived by making a non-relativistic expansion of the spinors in powers of small relative
velocity, of Q) pair, v.

= Calculation involves a double expansion in ags and in v.
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NRQCD Factorization (collinear)

= NRQCD factorization theorem separates quarkonium TMDFF into short distance coefficients
(d;—ce ) and NRQCD long distance matrix elements ((O7/%)).
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= Short distance coefficients d;_..z describe production of c¢ from a parton, “s.
= Perturbatively calculable though NRQCD matching.

= NRQCD LDMEs describe the hadronization of a ¢¢ with specific quantum numbers into a J/v .
= Formally, a NRQCD double parton fragmentation function.
"= |n practice, a constant extracted from experiment.
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NRQCD Factorization (TMD)

= TMD NRQCD factorization theorem applies the same principles, but now both d;_, .z and (O7/%)
have transverse momentum dependence.

= We calculate the TMD short distance matching coefficients, d; ,.z(k_).

= NRQCD TMDFF (D5 7/4(P, )) can have additional transverse momentum dependence due
to soft gluon radiation.
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NRQCD Factorization (TMD)

= |f the transverse momentum is sufficiently greater than A, ~ m_v?, then we can expand the
NRQCD TMDFF.

Deosypp(r) ~ S5 O LN H (),

Hp oy (pr) =0 (p )+ 322 (—‘“Siﬁ”) Wy ey (P1)

= This puts all of the transverse momentum dependence in the perturbative matching
coefficient!
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Production Mechanisms

= In SIDIS there are two ways to produce a J/«¢ at leading order.

" The incoming electron can hit a quark which then fragments intoa J/+.
= Or the electron can probe a gluon — the emitted virtual photon fuses with the gluon to create a ¢¢ pair.

= The latter is a probe of gluon structure at leading twist!
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Fragmentation Functions

= Fragmentation functions tell us the probability that a parton
(IHH.
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will hadronize into a hadron

= Provide information on how hadrons emerge from energetic quarks and gluons.

q/q

= Like PDFs, defined by non-perturbative matrix elements and are used in factorization theorems.

OSIDIS X




Quark Fragmentation

= Production of a cc pair fragmenting from a light quark gives 3 possible diagrams (plus mirrors)
at lowest order.

db™ +
Aysgw = QJ\;LCZTT [/ el P /ZZ T (0| W (5)1:0) 3 /46, X ) (I /9, X[ W )|0>]

= Only unpolarized quark to unpolarized J/v TMD FF has been studied before.
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Gluon Fragmentation (Leading Order)

= TMD Gluon to J/Psi FF has not been studied in literature.

= Does not show up at leading twist in SIDIS but is relevant for quarkonium
production in jets.

= Definition of FF is different; however calculation is similar.
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Quark Polarizations

L 9uark can be unpolarized (7 ), longitudinally polarized (7 522), or and transversely polarized
ot
V5 )-

= Project out these states by completing spin trace in definition.
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J /v Polarizations

= Project out J/4) polarization by replacing polarization vectors (like tensor decomposition).

Eie*j — %5@3 . %Eijksk L Tij

AAYeed — L(—gmv 4 BL2y — envalB g, py — i

L J/w can be unpolarized, longitudinally, or transversely polarized.
= Determined by values for spin parameters.
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= Polarized fragmentation functions are defined as the objects proportional to these spin

parameters.
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Quark Fragmentation Functions

= There are 18 polarized quark to J/¥ TMD fragmentation functions.

= At leading order in the strong coupling, only seven FFs survive!

= Unpolarized quark:
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Quark Fragmentation Functions

= There are 18 polarized quark to J/¥ TMD fragmentation functions.
= At leading order in the strong coupling, only six FFs survive!

= Unpolarized quark:

Quark polarization
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Quark Fragmentation Functions

= Longitudinally polarized quark:
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Quark SIDIS Cross Sections

= With unpolarized J/v¢, unpolarized beam, and unpolarized target, there is only one
contribution to the cross section at leading twist.
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Polarized SIDIS cross section

= Polarized J/¥ production is a much richer test of QCD!
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Polarized SIDIS cross sections
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Polarized TMD Fragmentation in SIDIS

= To produce transversely polarized J/¥, plugin Sz = 1/2 and sum over both transverse

polarizations (m = +/- 1).

= To produce longitudinally polarized J /%, plugin S, = —1.
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Transversely Polarized J/v production
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Fragmentation contribution to dogrg;
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Fragmentation contribution to doy
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Direct Production Mechanisms

= The electron can also “strike” a gluon in the proton. This process competes with fragmentation.

=There are two ways .J/1 can be produced through photon gluon fusion.

= J/4 can either be in a color singlet or a color octet.
= Color octet is leading order in ;s
= Color singlet is leading order in “v”.
QQ(s")

il il
- -

Y Y

/ QQ(sy /2P / N

g g1 g2

= Introduce TMD shape functions.




Color Singlet Photon-Gluon Fusion

= 6 diagrams — J/¢) is in the 35" state.

_ Py Py

: Pgqq
= Expected to contribute more for z << 1. o

= Radiated gluon steals momentum from the initial parton.
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Color Octet Photon-Gluon Fusion

= J/4p is either in 13([,8} or 3P}8] since there is no additional gluon to make it a color singlet.

= No gluon is radiated so the J /1) takes carries away all of the initial parton momentum.
= This process dominates as z -> 1.
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Comparing production mechanisms
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Comparing production mechanisms (L
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Future Work

= Calculate soft gluon corrections to NRQCD factorization theorems.
= Important for very small transverse momenta.

= More phenomenological studies (beam asymmetries, identify other interesting observables, etc.)
= Extract NRQCD long distance matrix elements from fitting to world data.

= Calculate polarized gluon fragmentation at NLO and study quarkonium production in jets.

= Calculate TMD fragmentation functions for other hadrons.
= Other quarkonia

= Kaons and pions.
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