QuantOm Collaboration QUAntum chromodynamics Nuclear TOMography Collaboration

Patrick Barry, Argonne National Lab

NCSU group meeting, 10/13/2023

SciDAC overview

- Scientific Discovery Through Advanced Computing
- Initiated in 2001 to develop the Scientific Computing Software and Hardware Infrastructure needed to advance scientific discovery using supercomputers
- Partnership involving all US DOE's 6 Office of Science (SC) programs
- Every 5 years, calls for new projects and renewals
- 3 current nuclear physics projects
 - Femtoscale Imaging of Nuclei using Exascale Platforms (this one)
 - Fundamental nuclear physics at the exascale and beyond
 - Nuclear Computational Low Energy Initiative (NUCLEI)

• Example of a feature from SciDAC

Three-Dimensional Simulations of Core-Collapse Supernova Explosions

QuantOm: https://www.anl.gov/phy/quantom

<u>AIM</u>

• To deliver: Femtoscale imaging of nuclei using exascale platforms

How?

- Convene domain scientists, applied mathematicians, and computational scientists to address the challenge of 3D imaging of quarks and gluons in nucleons and nuclei
- Develop a unique event-level inference framework using high-energy scattering data

Science questions

- What is the 3d confined motion and spatial distribution of quarks and gluons in nucleons and nuclei?
- How do parton dynamics contribute to emergent phenomena such as mass?

Femtoscale imaging

• Taking "pictures" of the proton as a function of scale

What are we looking for?

• Images of protons in coordinate and momentum space

How do we do it?

JLab

- Through experimental data in factorizable processes
- Focus on electron-induced reactions that can be realized at EIC and

Histogram Analysis

 Generally, all data are represented through histograms with each event binned by kinematatics

Disadvantages:

• Detector effects must be unfolded; more difficult than folding in the detector effects

Information lost

- Less granularity within bin
- 3D pictures require events in 5 or more dimensions – need every bit of information gathered!

Event-level Analysis

- Not necessary to bin each event into histograms
- Need use of high-performance computing

Framework

- Example of generative adversarial network (GAN)
- Feed in noise, through theory and data comparison, update parameter generator
- Need machine learning (ML) and artificial intelligence (AI) techniques

Optimize QCF parameters

Example of training a GAN - initialize

"True" image

Flattened image and training

After training

Outlook

- Want to perform on realistic cases
- Start in 1D train theory events (PDF image-dependent) to match experimental events
- Move to 2D (my focus) TMDs as a function of x and $k_T = |\mathbf{k}_T|$
 - Events are more differential need a transverse momentum observable
 - Framework needs to be built for this more challenging than 1d case
 - Create images of TMDs in x and b_T space

Teaser

- Show the initial-scale TMD in (x, b_T)
- Highly peaked at small x and small b_T

And eventually...

• Produce an image of the proton like another popular image

