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Thermodynamics of ideal gas (example)

Pressure Temperature

Ideal gas law \IJV — NkB@

Volume

T=0 temperature

© 2012 Encyclopaedia Britannica, Inc.



Thermal equilibrium

Temperature is homogeneous.

First law of thermodynamics:

dE = 0dS — vdV + ydN

Temperature Pressure Chemical potential




The Newtonian theory of heat propagation

Temperature
Heat
Heat equation: q — — KV O, Heat
conductivity
00 1 .
Evolution of temperature distribution: ——— = V -q, pe
t Cy specific heat for
constant volume

Combining the two, the resulting heat equation takes parabolic form, making causality problem(?).

In Newtonian theory of thermodynamics, information propagates with infinite speed.

To rectify this deficiency, Cattaneo and others introduced a small positive time parameter:

]
Cattaneo equation: q + T R_C] = —KV@,

ot

relaxation time scale of a medium

This equation restores causality at the cost of introducing a term
that does not come from underlying microphysics.



In general, there is NO general relativistic rules on how the local thermodynamic parameters connects with
some notion of global parameters.

However, with various assumptions, we can proceed.



Process for relativistic thermodynamics



Going to relativistic thermodynamics: 1) writing in terms of densities

eg, ideal gas law,
UV = Nkp® Setk B-l1.
U =nob

dE = OdS — vdV + XdN Here, S, V, N are extensive quantities.

We can use scaling symmetry () — A(Q) for extensive quantity to get
MdAE — 0dS + UdV — xdN) +dA\E +3YV —xN —0S5) =0

p+ U =0Os+xn dp = Ods + xdn

Then, the densities must be a scalar density measured by a comoving observer with the fluid element.



|

~

Trajectory of particle




 N.Andersson and G. L. Comer, Living Rev Relativ 24, 3 (2021)

Eckart frame: Usually, one choose the number flux direction to be parallel to the time direction of comoving observer.

Trajectory of particles

Heat flux
a
n q“
n ©
q
Entropy wrta q
comoving observer

Why this ‘q’ is heat flux?

Later when we write the stress tensor, we find that the T_{0i} component is expressed by the "’ part.



e HCK, Y. Lee (2022), HCK (2023) etc. * N. Andersson and G. L. Comer, Living Rev Relativ 24, 3 (2021)

Process for relativistic thermodynamics

(lIater pages)

One of the main results is

First law of thermodynamics: Heat

dﬂ(ﬂ,S,ﬁ) :an—l—@dS—FCdﬁ, ﬁ;ﬁgb gzg

(conjecture) Extended irreversible Correction from thermal
thermodynamics (Jou et.al., 1993) equilibrium due to heat

This result naturally signifies the heat dependent energy density! 0 (TL, s{v )

e arXiv:2311.06994 (HCK)



An interesting result of relativistic thermodynamics:

Thermal equilibrium

No heat etc
Tolman
temperature
Static system
Geometry is static.

Temperature, energy density

etc are time-independent.
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In the case of a gravita : TOO Yo
dynamic equilibrium, it has i ( ) - "o eger o
as measured by a local obser (") T — —, Therm.al equilibrium,
tional potential at the point \/ — g()() (sz ) le Static geometry.
the conditions of thermal equ i
gravitational field which coul id

partSQ Writing the lim O!M‘ AVA LIl 6‘555\0&“5 VLG LVILG AMUIAINL 333 VAN AR RN
ds? = g;idxidx; + gudf? i, 7=1,2,3,

where the g¢; and g4 are independent of the time ¢, it is shown that the dependence
of proper temperature on position at thermal equilibrium is such as to make the
quantity Tov/ g4 a constant throughout the system. -
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Abstract

Tolman's relation for the temperature gradient in an ec
Is broadly accepted within the general relativity comm
gradients in thermal equilibrium continues to cause cc

contradicts naive versions of the laws of classical ther

Gravity's universality: The physics underlying
Tolman temperature gradients
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ABSTRACT:

We provide a simple and clear verification of the physical need for temperature gradients
in equilibrium states when gravitational fields are present. Our argument will be built in
a completely kinematic manner, in terms of the gravitational red-shift /blue-shift of light,
together with a relativistic extension of Maxwell’s two column argument. We conclude
by showing that it is the universality of the gravitational interaction (the uniqueness of
free-fall) that ultimately permits Tolman’s equilibrium temperature gradients without
any violation of the laws of thermodynamics.




If the temperature gradient is dependent on the matter
kinds, the radiated photons from the above and from the
bottom may not have the same temperature.

Then, By putting some photo-tube which connect the top
and the bottom one can construct a permanent engine.

To avoid a permanent engine, the Tolman temperature
gradient must be independent of the matter contents.

Figure 2. External observer looking at photons leaking from
the box containing the photon gas, with the photons arriving
at some angle to the vertical.
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Variational formulation for Fluid dynamics: One fluid case:




Eulerian variation and Lagrangian variation

e FEulerian (4): An army of observers at rest with respect to a generic frame of reference make notes of the
evolution as the various fluid elements intersect their worldlines. Therefore, o) is a change in () at fixed
spacetime point.

e Lagrangian (A): Each observer attaches him to a particular fluid element and monitors how that element
changes. Therefore, AQ is a variation of the field wrt to a frame dragged along by (® (z* — z® + (%).

A=5+ £

o
/S

//
/A See Ref. Covariant thermodynamics & Relativity

/ by Cesar Simon Lopez-Monsalvo (2011)
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Construction of matter space Carter(1989)

AN B = (A@B B® A)

2!
The matter space (3D) N A, "
. ‘ ‘ NABC] = 3_(nABC’ — NACB + MCAB — NCBA T NMBCA —nBAC)
o o o
| 9 define a 3-form field, which depends only on
. ~ ~ the matter space coordinates.
e o A B C
. ~ ~ . n=napcdN" NdN“- ANdN

dn = napc,pdN® NAdN*ANANP NANC = niapc pidN” AANA AANP NAN©
v Y A

Because, n_ABC is a completely antisymmetric on ABC,

dn = 0

Particles



The variational formulation: One fluid

The matter space (3D)

nac(N”)

Mapping:

A

tA

Carter(1989)

ONA ONE ONC
Nabe — n
b dxla 9rb g ABC

d  _dabc
a scalar function n. =—=c¢ N abe
on spacetime.

| - y

b >

- . -
. ',
x
particle number!
V[anbcd] =0 — Vana = (.

18

By construction, the particle number is conserved.



4. Number density 3-form from matter space to spacetime 3-form:
ON* ONB ONC
Nabe = n
e dxla gzb g APC
Here n 4pc i1s antisymmetric and provides matter space with a geometric structure.
ON4 ONB ONC
> n=nacdN*ANINP NdAN® = napc dz® ) A dz® | A dz° (5)
oz Ox® 0x°

This gives the above result. If integrated over a volume in matter space, it gives a measure of the number of
particles in that volume. The matter space to construct the three-forms are automatically closed on spacetime:

ONE ONC ONP
> Viaed = ViaTgub pge pgd MBCD
0 by symmetry 0 N spaceis 3 dim
B BZV/E)NCE)NDn - ON4 ONP ON¢ Onpcp
B erac’?a:b oxc 9xd PP b Ox¢ Oz ONA
= 0m (6)
Here, n4pc is a function of N4 only. Note that
dN“L o _ 171 abed A_ " abed Ag. nB C D
o = U Va,N =N 56 nbchaN = 76 VaN VbN VCN VdN npco = 0. (7)
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5. Introduce Lagrangian displacements £%: Then, we have

6. After some algebra, one find

> dnabc

NA
0=AN* =N+ £LN* — (N4 =—-L,N*=-¢° %xa . (8)
Here, we use the fact that N4 is a scalar function on spacetime, z.
A =0+ £
Anabc = 0.
Onagc A B C D
( SN D VoN“VyN°V.N~ | 6N

+napc [VadNAVy NPV .NC + V, N4V, NPV .NC + V,6NAV,NPV SN

—napc [(§3VaVaN? + (VaN?) (V&) Ve NPV N€
+VoNA(€V,VaNB + (VaNP)(Ve?))V.N€
+V NAV,NB (£4V V4N + (V4NO)(VED)]
£ (Vanapc)[VaNAVeNBV . NC + napcVa [(VaN) (VeNE)(V.NO)]}
—napc [(VaNA)VyNEV . NC (V%) + V,NAVGNEV . NC (VD) 4+ Vo sNAV,NEV NC(V £)]
—£V anabe — [Nabe(Va€?) + Nade(Vo€?) + napa(Ve£?)]
—LeNabe: g (9)

which in turn implies

1

on® = n®Vpe® — £°Vypn® — n® (beb +5 bc59bc) . Proof: next page



where in the second equality, we use, using Eq. (8),

VidNA = -V, [(VaNA)EY = —(V,VaNA)EL — (VaNA) (V€9

Now,
on® — ld[eabcdn ] = l(&eabcd)n 4 ieabcd&n
31 bcd 3| bc 3| bcd
1 abc 1 e 1 abc e e e e
— _ge b dn cd§g f5gef 3'6 ’ d{—f ve'n'bcd — [necd(vb§ ) nbed(vc€ ) nbce(vdg )]}
1
— —n“igbcégbc — £°Ven® + (5gnb — naa’;) (Vp€©)
1
= n°Vpf® — Vn® — n®(Vipt® + 59b659bc)
a a b 1 bc
= —£§n — N (ng = ég 5gbc)- (10)
Here we use Egs. (4), (75), and Eq. (3). 1 1
0v/—g = 5\/jggab59ab, €0123 = v/ —9, )% = _ﬁ
canea = V/=glabed] - 5t = —eedgelsg,
eadeeaefg = —52%, eadeeabef = —522? = —252?, €2 e ppee = —3107,



Congruence of world-lines C h e Ck f()r th e D () F:

nCL

é‘CL

8. Check for the degrees of freedom: Pull-back construction has 3 dof. Lagrangian variation has 4-dof.
Gauge freedom in the Lagrangian variation that can be used to reduce the # of indep comps:

ga — Ea, 4 Ga.
From Eq. (10), and V,n® =0, we get

_ 1 -
577,“ = 5na — §€ab6dvb(€cdef’ner) = 577,“ — 5§]?Vb(ner),

where § denotes the dn using £€¢. If we set G = u/ G, the last term vanishes.
» (0 — S)na’ = £€_£na =t ’I’Lavb(ga — &Y = —£Lan® — naVbi
= —G°Vpn® + nbV,G* — n?V,G? = n’V,G? — V, (n®GP) = 2V, [n*GY] — G*(V,n?)

Now, if we use V,n?® = 0, we get Eq. (16). m

22



Variational formulation for Fluid mechanics (one fluid case)

8l
Theaction: [ =I1gg+ 1y = / ( R+L> V—ygd'z, e T
The Geometry: G, = kT,
, , l‘()piC system of the fluid, the matter Lagrangian, /\, should be ascalar.
on . a.b on _ b have a single matter, n% itmust be a functionof n? = —g,,n%n’.
=n"n, ~ = GabM
89 ab on
Contribute to
1D g oA — 1 ( O\ ) b Lagrangian density becom«  Sgress tensor
» On® YadTt
O0(v/—gA) =+/—g Xa5n + — (Agab + n%y )5gab 4+ total derivatives
aA
Xa = I : The canonical momentum.

Then, the equation of motionbecomes, X = 0. This result is not so interesting.

The reason is that all the variations are not free because of the particle number conservation law.
23



The (constrained) variational formulation: One fluid 5  ¢,,cr1989)

Back to the variational principle, introduce the Lagrangian displacement, ¢

tracking the motion of the fluid element.
Congruence of world-lines

,na

By definition, AN A — ON A + £ gN A — 0 Carter(1973)

1
This naturally determines the variation of the number flux: on" = T (€7 npeq)

1b
00 | .
29 9b>

on® = n’Vpc® — £°Vyn® — n® (Vbﬁb |

Then, the (constrained) variation of the Lagrangian density becomes

1
O0(v—gA\) =—g | fu&® + 5[(/\ — n°Xe)Gab + NaXp]0g?° | + total derivatives

fb — Qnav[aXb] =0 Stress tensor vaTab — _fb

24



Interpretation of the equation of motion

The vorticity two-form: Wab = Vg X5 fo = n"wqp =0

This equation plays a crucial role in fluid dynamics (Carter 1989, Bekenstein 1987) in explaining
turbulence (Pulling and Saffman 1998) and Kelvin-Helemholtz theorem (Landau-Lifschitz 1959).

Geometrical interpretation of the EOM Andersson &Comer(2021)

OOOOLOO

i

>

Y

Geometrically, the
. The four-velocity of the individual fluid element lies
inside the world-tube.

Consider the closed black contour.
If that contour is attached to fluid-element worldlines, then the
number of world-tubes contained within the contour will not

change (Kelvin-Helemholtz theorem).

25



Helmholtz’s theorem:

Helmholtz’s theorem (wiki):

In fluid mechanics, Helmholtz's theorems, named after Hermann von Helmholtz, describe the three-dimensional
motion of fluid in the vicinity of vortex lines. These theorems apply to inviscid flows and flows where the influence of

viscous forces are small and can be ignored.

Helmholtz's three theorems are as follows:"

Helmholtz's first theorem
The strength of a vortex line is constant along its length. time independent.
Helmholtz's second theorem

A vortex line cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path.
Helmholtz's third theorem vortex line moves with the fluid.

A fluid element that is initially irrotational remains irrotational.

26



Dissipative action principle




Minimal model for heat conduction: Two-fluid model

matter space for entropy flux (3D) spacetime (4D)

S‘?@—%\‘

matter space (3D)

Let the three form field n residing on the matter space {N4} depend on other matter space {S£} too:
n =napc(NP,SE)YdN* NdANP N dNC.
s =sapc(SP, N¥YAS* A dSP A dSY

23



Dissipative action principle

Let the three form field n residing on the matter space {N4} depend on other matter space {S£} too:

n =napc(NP,SE)YdN* NdANP N dNC.

Then, the creation rate of n"a does not vanish because of the {S£} dependence:

A B C D
PNEvaTLa: Z 1 abcd@S 8N 6’N 8N (8%301}) #O

3!6 Oxa Oxb Oxc¢ Oxd

SAN

The creation rate is determined by how much the three form field depends on the other matter space
coordinates.

29



Dissipative action principle

Now, we may introduce a Lagrangian displacement £y, tracking the motion of the fluid element.

From the standard definition of Lagrangian variations, Ay =6 + £, we have

ANN? =N 4 £, N4 =0,
Then, the matter space variation becomes,

ONE ONC gNP

I Oxlb Oxc Oxd ANTBOD;

ONped = —L &y Mbed

on 0S¥
Annpep =) ~aep (€5 —€8) 5
S

Straightforward calculation gives,

1
YaOn® = Y4 (nbvbﬁj‘{, — gﬁwbna — navbﬁ?\; — 2nagbcégbc>

o NS /(¢Fa  ¢a
S#ZNRCL (gs gN) RNS_ 1 BCDanBCD 8SA
@ TN 954 \gae )

30



Dissipative action principle
Based on the result, we get the variation of the Lagrangian density, (up to total derivatives)

0(v/—gA) = —ng{(fév + Xal'N — Ré,v) En T+ (f&g + O.l's — Rf) s — %Tabégab} :

where T% = Wg + (n%x® + s°0°) and the pressure is ¥ = A — x,n® — s°0, and

N = anV[bxa], 7= ZSbV[b@a], RY =R°N —RYS5 = —R®.

Equation of motions:

fciV_I_FNXa:RiVa f&g—l—rs@&:Rg.

: : 1 L _ _.a
Entropy/particle creationrates: TI's = —6SCLR§ I'n = Y R,,  X=—-u"Xa:

The energy-momentum conservation law is satisfied automatically from the equation of motion

VbTba — fév + ff +xJI'ny +0,I's =0, because Rflv -+ Rf = 0.



Second law of thermodynamics:

|
[o— ——gaRS
S=7g°% Mt _

2Resistivity

S@FS — Rg§2

The second law of thermodynamics becomes R 2 O



Proof for variational formulation is compatible with non-vanishing creation rate:

Now, we are ready to refute the proof (2). Let us consider two distinct variations generated by £%; and £% = £ —G%,.
We also introduce two distinct variations for the fluid S generated by £% and £% = £% — G&. The difference between
the two variations of n® becomes

a a a - ne ~€ e e ~€
(6 =0)n" = Leen® +n"Vo(€ =€)+ R (ER — X — £5+£)
a e a , n® e e
=~ Vs(n°GL) — GATN + — > RYS(=Gf +GS) (21)
X S#£N

When the two variations are related by their flow directions so that G% = Gnyn® and G¢ = Ggs®, we find the
difference vanishes automatically without any additional requirement:

(6 —&)n® = —G4Tx Gg; RNSpe = 0, (22)

where we use s RY® = 0 =n®R>" and Eq. (17). This result allows us to describe systems with V,n® # 0 by means
of the action formulation with dissipation.



Adding viscosities, etc

Allow n% .~ to depend on g&27

A B
HGT@, gjéfB — (%]:\Cfa ) (a@]ib ) Yab
1s the induced metric.

This generalization develops dissipative stresses.






