Interpolation of the 't Hooft model between Instant and Light-Front Dynamics

Chueng-Ryong Ji North Carolina State University

May 31, 2024

Outline

- Motivation
- Why Light-Front?
- Link the Light-Front Dynamics and the Instant Form Dynamics
- 't Hooft model as a toy QCD
- Quark mass gap solution
- Quark-Antiquark bound state equation
- Link to the Light-Front Quark Model
- Regge trajectories and the pionic ground state
- Parton Distribution Functions for Hadron Phenomenology
- Conclusions and Outlook

How do we understand the Quark Model in Quantum Chromodynamics?

$$M_p = 938.272046 \pm 0.000021 MeV$$

 $M_n = 939.565379 \pm 0.000021 MeV$

$$m_u = 2.3^{+0.7}_{-0.5} MeV$$
; $m_d = 4.8^{+0.7}_{-0.3} MeV$

VS.

Constituent Quark Model

$$M = m_1 + m_2 + A \frac{\overline{s_1} \cdot \overline{s_2}}{m_1 m_2}$$
$$m_u = m_d = 310 MeV/c^2$$
$$A = \left(\frac{2m_u}{m_1}\right)^2 160 MeV/c^2$$

$$= \left(\frac{2m_u}{\hbar}\right)^2 160MeV/c^2$$

đ u

Quantum Chromodynamics Isospin symmetry Chiral symmetry $SU(2)_R \times SU(2)_L$ Spontaneous symmetry breakdown Goldstone Bosons $F_{\pi}^{2}M_{\pi}^{2} = -(m_{u} + m_{d}) \langle 0 | \bar{u}u | 0 \rangle$ Effective field theory

Why Light-Front?

- Distinguished Vacuum Property
- Maximum Number of Kinematic Operators
- Distinguished Conformal Symmetry (Work in progress @ NCSU group meetings)

Dirac's Proposition for Relativistic Dynamics

Infinite Momentum Frame (IMF) Approach

Note that this is still in the instant form (IFD).

However, in LFD, (b) drops for any reference frame (not just for IMF)

Conformal Symmetry in IFD

1D

	P_0	\mathfrak{K}_0	D
P_0	0	2iD	iP_0
\mathfrak{K}_0	-2iD	0	$-i \mathfrak{K}_0$
D	$-iP_0$	$i\mathfrak{K}_0$	0

 $P_0 = i\partial_t$ $D = it\partial_t$ $\mathfrak{K}_0 = it^2\partial_t$

	P_0	\mathfrak{K}_0	D	$-P_3$	\mathfrak{K}_3	K^3
P_0	0	2iD	iP_0	0	$2iK^3$	$-iP_3$
\mathfrak{K}_0	-2iD	0	$-i \mathfrak{K}_0$	$-2iK^3$	0	$-i\mathfrak{K}_3$
D	$-iP_0$	$i \mathfrak{K}_0$	0	iP_3	$i\mathfrak{K}_3$	0
$-P_3$	0	$2iK^3$	$-iP_3$	0	2iD	iP_0
\mathfrak{K}_3	$-2iK^3$	0	$-i\mathfrak{K}_3$	-2iD	0	$-i \mathfrak{K}_0$
K^3	iP_3	$i\mathfrak{K}_3$	0	$-iP_0$	$i \mathfrak{K}_0$	0

2D

Work in progress with Hariprashad Ravikumar et.al.@NCSU group meetings

Conformal Symmetry in LFD

1D

2D

	P_+	R+	D_+
P_+	0	$2\sqrt{2}iD_+$	$\sqrt{2}iP_+$
\mathfrak{K}_+	$-2\sqrt{2}iD_+$	0	$-\sqrt{2}i\mathfrak{K}_+$
D_+	$-\sqrt{2}iP_+$	$\sqrt{2}i\mathfrak{K}_+$	0

	P ₊	R+	D_+	<i>P_</i>	Ŕ_	D_
P ₊	0	$2\sqrt{2}iD_+$	$\sqrt{2}iP_+$	0	0	0
R+	$-2\sqrt{2}iD_+$	0	$-\sqrt{2}i\mathfrak{K}_+$	0	0	0
D_+	$-\sqrt{2}iP_+$	$\sqrt{2}i\mathfrak{K}_+$	0	0	0	0
P_	0	0	0	0	$2\sqrt{2}iD_{-}$	$\sqrt{2}iP_{-}$
R_	0	0	0	$-2\sqrt{2}iD_{-}$	0	$-\sqrt{2}i\mathfrak{K}_{-}$
D_	0	0	0	$-\sqrt{2}iP_{-}$	$\sqrt{2}i\mathfrak{K}_{-}$	0

$$P_{\pm} = \frac{P_0 \pm P_3}{\sqrt{2}}, \, \mathfrak{K}_{\pm} = \frac{\mathfrak{K}_0 \mp \mathfrak{K}_3}{\sqrt{2}} \,$$
, and $D_{\pm} = \frac{D \mp K^3}{\sqrt{2}}$

Can IFD and LFD be linked?

The instant form

Traditional approach evolved from NR dynamics Close contact with Euclidean space T-dept QFT, LQCD, IMF, etc.

Innovative approach for relativistic dynamics Strictly in Minkowski space DIS, PDFs, DVCS, GPDs, etc.

The front form

Interpolation between IFD and LFD

 $(IFD) \quad 0 \le \delta \le \frac{\pi}{4} \quad (LFD)$ $1 \ge C \equiv \cos(2\delta) \ge 0$

K. Hornbostel, PRD45, 3781 (1992) – RQFT
C.Ji and S.Rey, PRD53,5815(1996) – Chiral Anomaly
C.Ji and C. Mitchell, PRD64,085013 (2001) – Poincare Algebra
C.Ji and A. Suzuki, PRD87,065015 (2013) – Scattering Amps
C.Ji, Z. Li and A. Suzuki, PRD91, 065020 (2015) – EM Gauges
Z.Li, M. An and C.Ji, PRD92, 105014 (2015) – Spinors
C.Ji, Z.Li, B.Ma and A.Suzuki, PRD98, 036017(2018) – QED
B.Ma and C.Ji, arXiv:2105.09388v1[hep-ph], PRD104, 036004(2021) – QCD₁₊₁

Large N_c QCD in 1+1 dim. ('tHooft Model)

$$\mathcal{L} = -\frac{1}{4} F^a_{\hat{\mu}\hat{\nu}} F^{\hat{\mu}\hat{\nu}a} + \bar{\psi}(i\gamma^{\hat{\mu}}D_{\hat{\mu}} - m)\psi$$

$$D_{\hat{\mu}} = \partial_{\hat{\mu}} - ig A^a_{\hat{\mu}} t_a$$

$$F^a_{\hat{\mu}\,\hat{
u}}=\partial_{\hat{\mu}}A^a_{\hat{
u}}-\partial_{\hat{
u}}A^a_{\hat{\mu}}+gf^{abc}A^b_{\hat{\mu}}A^c_{\hat{
u}}$$

'tHooft Coupling $\lambda = \frac{g^2 \left(N_c - 1/N_c\right)}{4\pi}$ and mass m

$$g \rightarrow 0, N_C \rightarrow \infty; \lambda \rightarrow finite$$

Short List of LFD vs. IFD References

- G.'tHooft, NPB75,461(74) LFD
- Y.Frishman, et al., PRD15(75) Interpol Gauges IFD&LFD
- I.Bars&M.Green, PRD17,537(78) IFD(formulation)
- A.Zhitnitsky, PLB165,405(85) LFD(chiral sym breaking)
- M.Li, et al., JPG13, 915(87) IFD(rest frame)
- K.Hornbostel, Ph.D. Dissertation(88) LFD(DLCQ)
- M.Burkardt, PRD53,933(96) LFD(vacuum condensates)
- Y.Kalashnikov&A.Nefed'ev,Phys.-Usp.45,346('02) IFD(rev)
- Y. Jia, et al., JHEP11, 151('17) IFD(moving frame)
- Y. Jia, et al., PRD98, 054011('18) IFD(quasi-PDFs)
- B.Ma&C.Ji, PRD104,036004('21) Link IFD&LFD

Coulomb Gauge vs. Axial Gauge

Hunter Duggin, C.-R. Ji and Bailing Ma, PoS(SPIN2023)051

Fermion Propagator

 $F(p) = (1 - \Sigma_{\nu}(p))^{-1}$ "Wave function renormalization factor" $M(p) = \frac{m + \Sigma_{s}(p)}{1 - \Sigma_{\nu}(p)}$ "Renormalized fermion mass function"

Mass Gap Equation in Scaled Variables $\bar{p}_{\hat{-}}' = \frac{\bar{p}_{\hat{-}}}{\sqrt{\mathbb{C}}}, \ \bar{E}' = \frac{\bar{E}}{\sqrt{\mathbb{C}}}, \\ \bar{p}_{\hat{-}} = \frac{p_{\hat{-}}}{\sqrt{2\lambda}}, \ \bar{E} = \frac{E}{\sqrt{2\lambda}}, \\ \bar{m} = \frac{m}{\sqrt{2\lambda}}$ $\bar{p}_{\hat{-}}^{\prime}\cos\theta(\bar{p}_{\hat{-}}^{\prime}) - \bar{m}\sin\theta(\bar{p}_{\hat{-}}^{\prime}) = \frac{1}{4} \oint \frac{d\bar{k}_{\hat{-}}^{\prime}}{(\bar{p}_{\hat{-}}^{\prime} - \bar{k}_{\hat{-}}^{\prime})^2} \sin\left(\theta(\bar{p}_{\hat{-}}^{\prime}) - \theta(\bar{k}_{\hat{-}}^{\prime})\right)$ $\bar{E}'(\bar{p}'_{\hat{-}}) = \bar{p}'_{\hat{-}}\sin\theta(\bar{p}'_{\hat{-}}) + \bar{m}\cos\theta(\bar{p}'_{\hat{-}}) + \frac{1}{4} \oint \frac{d\bar{k}'_{\hat{-}}}{(\bar{p}'_{\hat{-}} - \bar{k}'_{\hat{-}})^2} \cos\left(\theta(\bar{p}'_{\hat{-}}) - \theta(\bar{k}'_{\hat{-}})\right)$

$$\frac{p_{\hat{-}}}{\mathbb{C}}\cos\theta(p_{\hat{-}}) - \frac{m}{\sqrt{\mathbb{C}}}\sin\theta(p_{\hat{-}}) = \frac{\lambda}{2} \int \frac{dk_{\hat{-}}}{(p_{\hat{-}} - k_{\hat{-}})^2}\sin\left(\theta(p_{\hat{-}}) - \theta(k_{\hat{-}})\right)$$
$$E(p_{\hat{-}}) = p_{\hat{-}}\sin\theta(p_{\hat{-}}) + \sqrt{\mathbb{C}}m\cos\theta(p_{\hat{-}}) + \frac{\mathbb{C}\lambda}{2} \int \frac{dk_{\hat{-}}}{(p_{\hat{-}} - k_{\hat{-}})^2}\cos\left(\theta(p_{\hat{-}}) - \theta(k_{\hat{-}})\right)$$

77

Mass Gap Solutions

 $m \lesssim 0.56$

Wave Function Renormalization Factors

BOUND-STATE EQUATION

Meson Spectroscopy

Gell-Mann - Oaks - Renner Relation

 π

Meson Ground-state Wave-function for m=0 case

Parton Distribution Functions (PDFs) $q_n(x) = \int^{+\infty} \frac{d\xi^-}{4\pi} e^{-ixP^+\xi^-}$ $\times \langle P_n^-, P^+ | \bar{\psi}(\xi^-) \gamma^+ \mathcal{W}[\xi^-, 0] \psi(0) | P_n^-, P^+ \rangle_C$ $\mathcal{W}[\xi^-, 0] = \mathcal{P}\left[\exp\left(-ig_s \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right)\right] \mathbf{A^+=0} \text{ Gauge}$ Quasi-PDFs $ilde{q}_{(n)}(r_{\hat{-}},x) = \int^{+\infty} rac{dx^{\hat{-}}}{4\pi} \; \mathrm{e}^{ix^{\hat{-}}r_{\hat{-}}}$ $\times < r_{(n)}^{\hat{+}}, r_{\hat{-}} \mid \bar{\psi}(x^{\hat{-}}) \; \gamma_{\hat{-}} \; \mathcal{W}[x^{\hat{-}}, 0] \; \psi(0) \mid r_{(n)}^{\hat{+}}, r_{\hat{-}} >_{C},$ $\mathcal{W}[x^{\hat{-}},0] = \mathcal{P}\left[\exp\left(-ig\int_{0}^{x^{\hat{-}}} dx^{\hat{-}}A_{\hat{-}}(x^{\hat{-}})\right)\right] \frac{\text{Interpolating}}{\text{dynamics}}$

Y. Jia, et al., PRD98, 054011('18) - IFD (quasi-PDFs)

B.Ma&C.Ji,PRD104,036004('21)Interpolating Dynamics

Extended Wick Rotation

$$p^{0} \rightarrow \tilde{P}^{0} = ip^{0} \quad (\delta = 0)$$

For $0 < \delta < \pi / 4$,

$$p^{\hat{+}}/\sqrt{C} \rightarrow \tilde{P}^{\hat{+}}/\sqrt{C} = ip^{\hat{+}}/\sqrt{C}$$
.

Correspondence to Euclidean Space

$$p_{\hat{-}}'^2 = p_{\hat{-}}^2 / C \nleftrightarrow - \tilde{P}^2$$

Conclusions and Outlook

- Interpolating 't Hooft model between IFD and LFD hints a plausible link between QCD and LFQM.
- Mass gap in 1+1D LFD is entirely provided by LF ZMs.
- Interpolation between IFD and LFD reveals the nature of LF ZMs and clarifies the prevailing notion of equivalence between the IMF approach and the LFD.
- Chiral condensate, GOR and Regge trajectories identical between IFD and LFD indicate the persistence of nontrivial vacuum even in LFD.
- LF vacuum is nontrivial due to LF ZMs.
- Interpolating quasi-PDFs offers a versatile tool to remedy the issue of LaMET approach in lattice QCD.
- Interpolating gauges (Coulomb vs. Axial), conformal algebra, 3+1D extension and mass gap timelike region deserve further investigation.

Yongwoo Choi, H.-M.Choi, C.-R. Ji and Y. Oh, PRD103,076002(2021)