Ahmad Jafar Arif

NCSU physics seminar, 26 april 2024

RIKEN

Application of gaussian-expansion method in the light-front quark model

Ahmad Jafar Arifi

<https://ajarifi.github.io>

- **Bachelor, University of Indonesia (2011 2015)** \bigcirc —> Prof. Mart [Kaon photo-production]
- **Internship, JAEA (2019 2020)** \overline{O}

- **Ph.D. & Postdoc, Osaka University (2015 2021)** \overline{O} —> Prof. Hosaka [Quark model & Dalitz plot]
- **Postdoc, APCTP, South Korea (2021-2023)** \overline{O}

—> Prof. Tanida [Analysis of Belle data]

Postdoc, RIKEN (2023 - Now) \bigcirc

—> Profs. Ji and Choi [Light-Front Quark Model]

—> Prof. Tsushima [MIT bag model]

—> Profs. Hiyama and Oka [Gaussian Expansion Method]

Table of contents

- Simple quark model
- Gaussian expansion method
- Light-front quark model
- **Discussions** \geqslant
- Summary

Finding hadrons

Hierarchy of matter *Quark flavor*

Main goal

To understand the structure and spectroscopy of hadrons

Types of hadrons Baryon Meson Multiquark/ pdg.lbl.gov

Exotic

Where are hadrons? 6

Inside an atom

Nucleus

Where are the others?

- Cosmic ray, etc \bigcirc
- Most of them are produced in \bigcirc experiments: Scattering or decays

A bump!!

- o Is it a hadron?
- Which hadron? \overline{O}

X(3872)

Hadron spectroscopy: many new states! 7

Hadron experiments: LHC, KEK, J-PARC, BESIII, J-Lab, EIC, etc…

- $\gamma p \to K \Lambda$ scattering,
- Many other scattering data.

- Effective Lagrangian approach
- Coupled-channel approach
- χ^2 fit to the data, (N>7000 data)
- Total and differential cross section,
- Polarization observables

Hadron resonances via scattering

Observables

Methods

Analysis

• Extracted nucleon resonances

Nucleon resonances in PDG 9

• There are many nucleon resonances discovered.

How to understand this spectrum?

• Hadron excitations

- Evidence that it is a composite particle.
- Problem: Nonperturbative!!
- **• Quark model predictions.**
	- Too many states?
	- Missing resonance problem?
	- Coupled-channel effect?
- **• Existence of exotic states?**

Hadron resonances via multi-body decay

-
- proton-proton, electron-positron collisions:
	- Produce heavy particles and decays into smaller ones.

• Another way to search for hadron resonances.

Dalitz plots and resonance bands

Observed resonance [qqb] \overline{O} $>$ *M* = 6072 MeV $\sum \Gamma = 72 \text{ MeV}$ $\lambda_b^* \rightarrow \Lambda_b \pi^+ \pi^-$

Analysis of $\Lambda_b(6072)$ 12

LHCb Observation

- What is its spin-parity?
	- -> By analyzing its decay, we can determine them

 $\Lambda_b^*(6072)$ π^+ \sum_{1}^{4} *^b π*[−] Λ_h We need a reaction or \overline{O} decay model.

LHCb, JHEP 06, 136 (2020).

PRD101, 111502 (R) (2020)

Sequential decay

Invariant mass distribution

Dalitz plot of Λ *b* (6072

Narrow cut

Narrow cut

Convolution

 \bigcirc

onvolution

 $m_{23}^2(\Lambda_b^0 \pi^-)$ [GeV²]

- Resonance [qqb] $> M = 6072 \text{ MeV}$ $\sum \Gamma = 72 \text{ MeV}$ $\lambda_b^* \to \Lambda_b \pi^+ \pi^-$
- LHCb, JHEP 06, 136 (2020)
- Hadron, \bigcirc
- not a quark \bigcirc

- Not known exactly \bigcirc
- Need a model \overline{O}

Cannot be directly observed \overline{O} Color confinement. \overline{O}

- Part of Standard Model
- Nonperturbative nature
- "Least precise theory."
- Electron Ion Collider [EIC]
- Lattice QCD \mathbf{O}

Quark (gluon) structure of hadrons

What we see!

What is inside hadron?

Only color neutral is observed.

Where is the quark?

Quantum Chromodynamics (QCD) Scale dependence

Constraining the structure 15

Gaussian expansion method

- Harmonic oscillator WF (analytic) \bigcirc
- From Schrödinger equation \bigcirc

At low resolution: constituent quark

Quark model wave function

| hadron $>$ = | spatial $>$ ⊗ | spin $>$ ⊗ | flavor $>$ ⊗ | color $>$

$$
H|\psi\rangle = E|\psi\rangle
$$

mode

Spatial part

$$
\begin{array}{c}\n\text{light} \\
\hline\n\text{u} d s \\
\hline\n\text{quark}\n\end{array}\n\begin{array}{c}\n\text{b} \\
\hline\n\text{heavy}\n\end{array}
$$

Variational methods in quantum mechanics 18

Variational principle

Example:

1D Harmonic oscillator

$$
\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 = \frac{-\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2 x^2.
$$

Trial wave function

$$
\psi(x)=e^{-\alpha x^2},
$$

Minimization of variational parameter

$$
\frac{\mathrm{d}f}{\mathrm{d}\alpha} = 0 \qquad \qquad \alpha = \pm \frac{m\omega}{2\hbar}.
$$

Excited states can be computed from orthogonality.

Given a system with a time-independent Hamiltonian. If ψ *is a well-behaved trial wave function of the system that satisfied the boundary conditions of the problem, then*

Approximation methods

- Solving Schrödinger equation \bigcirc $H|\psi\rangle = E|\psi\rangle$
- Gaussian basis functions \overline{O}

Gaussian expansion method

A numerical method to solve Schrödinger equation.

$$
\psi = \sum_{n=1}^{\max} c_n \phi_n^G
$$

$$
\phi_n^G(r) = \frac{(2\nu_n)^{3/4}}{\pi^{3/4}} e^{-\nu_n r^2}
$$

Why Gaussian basis?

Normalization \overline{O}

Generalized Eigenvalue equation

$$
H_h c = M_h Sc
$$

$$
H = \left\langle \phi_n^G \left| \hat{H} \right| \phi_m^G \right\rangle
$$

$$
S = \left\langle \phi_n^G \left| \phi_m^G \right\rangle
$$

Geometric progression [r_1, r_{max}] \bullet

$$
\nu_n = \frac{1}{r_n^2} \qquad r_n = r_1 a^{n-1} \qquad a = \left(\frac{r_{\text{max}}}{r_1}\right)^n
$$

$$
\langle \psi | \psi \rangle = \sum_{m,n} c_n^* S_{nm} c_m = 1
$$

Matrix elements in GEM

$$
\psi_{lm}(r)=\sum_{n=1}^{n_{\text{max}}}c_{nl}\phi_{nlm}^{\text{G}}(r)
$$

$$
\iint Y_{lm}^*(\theta,\varphi)Y_{l'm'}(\theta,\varphi)\sin\theta\,\mathrm{d}\theta\mathrm{d}\varphi=\delta_{ll'}\delta_{mm}
$$

$$
T_{ij} = \langle \phi_{ilm}^{G} | -\frac{1}{2\mu} \nabla^{2} | \phi_{jlm}^{G} \rangle = \frac{1}{\mu} \frac{(2l+3)\nu_{i}\nu_{j}}{\nu_{i} + \nu_{j}} \left(\frac{2\sqrt{\nu_{i}\nu_{j}}}{\nu_{i} + \nu_{j}} \right)^{l+\frac{3}{2}}
$$

$$
= \langle \phi_{ilm}^{G} | -\frac{1}{r} | \phi_{jlm}^{G} \rangle = -\frac{2}{\sqrt{\pi}} \frac{2^{l}l!}{(2l+1)!!} \sqrt{\nu_{i} + \nu_{j}} \left(\frac{2\sqrt{\nu_{i}\nu_{j}}}{\nu_{i} + \nu_{j}} \right)^{l+\frac{3}{2}}
$$

$$
\langle \phi_{ilm}^{G} | r | \phi_{jlm}^{G} \rangle = \frac{2}{\sqrt{\pi}} \frac{2^{l}(l+1)!}{(2l+1)!!} \frac{1}{\sqrt{\nu_{i} + \nu_{j}}} \left(\frac{2\sqrt{\nu_{i}\nu_{j}}}{\nu_{i} + \nu_{j}} \right)^{l+\frac{3}{2}}
$$

$$
\langle \phi_{ilm}^{G} | r^{2} | \phi_{jlm}^{G} \rangle = \frac{l+\frac{3}{2}}{\nu_{i} + \nu_{j}} \left(\frac{2\sqrt{\nu_{i}\nu_{j}}}{\nu_{i} + \nu_{j}} \right)^{l+\frac{3}{2}}
$$

$$
\langle \phi_{ilm}^{G} | \hat{\mu} | \phi_{jlm}^{G} \rangle = z_{1} \langle \phi_{ilm}^{G} | r_{1} | \phi_{jlm}^{G} \rangle
$$

Range parameters in Gaussian basis functions 21

antique.jl package 22

- For a benchmark of numerical method of solving Schrödinger equation P
- For a basis function of trial wave functions. P

InfinitePotentialWell

PoschlTeller

Analytical Solutions of Quantum Mechanical Equations

Give us a star on Github!

MorsePotential

HarmonicOscillator

A benchmark test of GEM: Hydrogen atom 23

 $V(r) \propto -\frac{\alpha}{r}$ *r*

r

Coulomb potential

Hydrogen vs Hadron spectrum 24

Hydrogen atom

 $V(r) \propto -\frac{\alpha}{r}$

r

Charmonium

$$
V(r) \propto -\frac{\alpha_s}{r} + br
$$

Heavy baryon spectrum 25

Heavy baryon decay and the set of the set of $\frac{26}{5}$

Nonrelativistic QM

- Hadron wave function \overline{O}
- Chiral interaction

$$
\mathcal{T} = \left\langle \pi \bigotimes_{\Lambda_c} \mathcal{L}_{\pi qq} \right\rangle
$$

$$
\begin{array}{ll}\n\lambda_c \Big|\mathcal{L}_{\pi qq} \Big|\bigotimes \lambda_c \Big\rangle & H_{NR} = g \left[\boldsymbol{\sigma} \cdot \boldsymbol{q} - \frac{\omega_{\pi}}{2m} \boldsymbol{\sigma} \cdot (\boldsymbol{p}_i + \boldsymbol{p}_f) \right] \\
\bar{\eta} \gamma^{\mu} \gamma_5 \vec{\tau} q \cdot \partial_{\mu} \vec{\pi} & H_{RC} = \frac{g}{8m^2} \bigg[m_{\pi}^2 \boldsymbol{\sigma} \cdot \boldsymbol{q} - 2 \boldsymbol{\sigma} \cdot (\boldsymbol{p}_i + \boldsymbol{p}_f) \times (\boldsymbol{q} \times \boldsymbol{p}_i) \Big|\n\end{array}
$$

$$
\mathcal{L}_{\pi qq} = \frac{g_A^q}{2f_\pi} \bar{q} \gamma^\mu \gamma
$$

Quark-meson interaction

Non-relativistic expansion

PRD 103, 094003 (2021)

- Observed resonance [qqc] \bigcirc $>$ *M* = 2625 MeV \rightarrow Γ < 0.52 MeV
	- $\lambda_c^* \to \Lambda_c \pi^+ \pi^-$

Analysis of $\Lambda_c(2625) \to \Lambda_c^+\pi^+\pi^-$ 27

Belle data

- Comparison with quark model? \overline{O}
	- -> assign to a QM state.
- -> lambda-mode, 3/2⁻.
	- -> direct coupling.

Belle, PRD 107, 032008 (2023).

Applications to multiquark states 28

PLB 814, 136095 (2021) • Looks simple, but numerically challenging. Many more!!

Doubly heavy Tetraquarks

Hadrons under a magnetic field

Potential in the quark model **Profits and Australia Contact PRD93**, 051502(R) (2016)

$$
H_{\text{rel}} = \frac{K^2}{2M} - \frac{\nabla^2}{2\mu} + \frac{q^2 B^2}{8\mu} \rho^2 + \frac{qB}{4\mu} K_x y - \frac{qB}{4\mu} K_y x
$$

+ $V(r) + \sum_{i=1}^2 [-\mu_i \cdot B + m_i].$

$$
V(r) = \sigma r - \frac{A}{r} + \alpha (S_1 \cdot S_2) e^{-\Lambda r^2} + C
$$

$$
= \sigma \sqrt{\rho^2 + z^2} - \frac{A}{\sqrt{\rho^2 + z^2}} + \alpha (S_1 \cdot S_2) e^{-\Lambda(\rho^2 + z^2)} + C,
$$

Cylindrical GEM

$$
\Psi(\rho, z, \phi) = \sum_{n=1}^N C_n \Phi_n(\rho, z, \phi),
$$

$$
\Phi_n(\rho,z,\phi)=N_ne^{-\beta_n\rho^2}e^{-\gamma_n z^2},
$$

- Landau level (transverse confinement) - Zeeman effect

Light-front quark model

Light-front dynamics 31

Why LFD?

Handle relativistic effect properly Maximal Poincare kinematic operator o Relevant for high-energy process Vacuum becomes simpler

Formalism

o Proposed by Dirac (1949)

- Connection to the previous discussion
- Diagonalizing usual Hamiltonian \bigcirc
- Transform the wave function to LFWFs \overline{O}
- With relativized kinematics \overline{O}

Instantaneous Hamiltonian

- Diagonalizing light-front Hamiltonian \bigcirc
- Bethe-Salpeter approach \bigcirc
- Continuum approach \bigcirc
- Ansatz \overline{O}

Light-front wave functions (LFWFs)

Many approaches

Solving this Hamiltonian

$$
H_{q\bar{q}} |\Psi_{q\bar{q}}\rangle = M_{q\bar{q}} |\Psi_{q\bar{q}}\rangle, \qquad H_0 = \sqrt{m_q^2 + k^2} + \sqrt{m_{\bar{q}}^2 + k^2},
$$

$$
H_{q\bar{q}} = H_0 + V_{q\bar{q}} \qquad V_{q\bar{q}} = a + br - \frac{4\alpha_s}{3r} + \frac{32\pi\alpha_s\tilde{\delta}^3(r)}{9m_qm_{\bar{q}}}(\mathbf{S}_q \cdot \mathbf{S}_{\bar{q}}),
$$

$$
H_{q\bar{q}} |\Psi_{q\bar{q}}\rangle = M_{q\bar{q}} |\Psi_{q\bar{q}}\rangle, \qquad H_0 = \sqrt{m_q^2 + k^2} + \sqrt{m_{\bar{q}}^2 + k^2},
$$

$$
H_{q\bar{q}} = H_0 + V_{q\bar{q}} \qquad V_{q\bar{q}} = a + br - \frac{4\alpha_s}{3r} + \frac{32\pi\alpha_s\tilde{\delta}^3(r)}{9m_qm_{\bar{q}}} (\mathbf{S}_q \cdot \mathbf{S}_{\bar{q}}),
$$

Relativized quark model and some series of the series

- Hadron is a relativistic object.
- Relativized Schrödinger equation: $H|\psi\rangle = E|\psi\rangle$
- Relativistic kinematics \overline{O}

$$
H_0 = \frac{p^2}{2m} \to \sqrt{m^2 + p^2}
$$

Gaussian Expansion Method (GEM) to solve the equation.

Wave function is divergent at the origin

Hiyama, PPNP51, 223 (2003)

Light-front quark model

Transform the wave function to the light front \bigcirc

$$
\left| \psi_{IF}(k_z, k_\perp) \right\rangle \rightarrow \left| \psi_{LF}(x, k_\perp) \right\rangle
$$

$$
k_z \rightarrow x = \frac{p_1^+}{P^+}
$$

- LFWF contains: \overline{O}
	- -> Radial part
	- -> Spin-obrit part (Melosh transformation)

$$
\psi_{\lambda_1\lambda_2}^{JJ_z}(x,k_\perp) = \phi(x,k_\perp)\mathcal{R}_{\lambda_1\lambda_2}^{JJ_z}(x,k_\perp)
$$

Mass and decay constant

Similar!子子 0.00 \overrightarrow{D} \overrightarrow{D}^* \overrightarrow{D}_s \overrightarrow{D}_s^* $\overrightarrow{\eta}_c$ $\overrightarrow{J/\psi}$ \overrightarrow{B} \overrightarrow{B}^* \overrightarrow{B}_s \overrightarrow{B}_s^* \overrightarrow{B}_c \overrightarrow{B}_c^* $\overrightarrow{\eta}_b$ \overrightarrow{Y}

Electromagnetic form factor and the state of the 36

 EM form $f_{\frac{1}{2}}$ \overline{O} => hadron is not a point-like object.

Distribution amplitude: GEM vs SGA²

fraction x.

1.0

HO wave function for excited states **38**

- HO basis expansion \overline{O}
	- $\Phi_{1S} = \phi_{1S}^{H0}$ $\Phi_{2S} = \phi_{2S}^{H0}$
- The universal θ parameter \rightarrow good approximation \bigcirc

 —> Coulomb-like int $\Delta M_{\text{colmb}} \propto \beta$

<> Competing contribution: —> Confinement int $\Delta M_{conf} \propto$ 1 *β*

<> Hyperfine int

- —> Small, but very important
- —> Mixing is needed

$$
-{\bf >}\Delta M_P{\bf >\Delta}M_V
$$

 $\Delta M_{hyp} \propto (S_q \cdot S_{\bar{q}})(\cos 2\theta - 2\sqrt{6} \sin 2\theta)$

 \rightarrow $\theta_c \approx 6°$

Decay constants for 2S states $\frac{1}{2}$ 40

A global analysis (fit): light and heavy mesons and the 41

 $\sigma^b_{model} = 0.7 \%$ $\theta = 12.9^{\circ}(5^{\circ})$

$$
\sigma_{model}^{c} = 2.0\,\%
$$

$$
\theta = 10^{\circ}(1^{\circ})
$$

$$
\sigma_{model}^{q} = 3.6\,\%
$$

$$
\theta = 2^{\circ}(8^{\circ})
$$

$$
\sigma_{model} = \lambda \sigma_{model}^{i}
$$

$$
\lambda = 1.2
$$

$$
\theta = 12.6^{\circ}(5^{\circ})
$$

- Global fit \overline{O} —> iMinuit (python)
- Trial WF \rightarrow θ = 12.6°(5°)
- Model error \overline{O}
	- \rightarrow less than 5%
- LFWF \overline{O} —> other properties

Deformed wave functions and LFWFs

$$
\Psi(\rho, z, \phi) = \sum_{n=1}^{N} C_n \Phi_n(\rho, z, \phi),
$$

$$
\Phi_n(\rho, z, \phi) = N_n e^{-\beta_n \rho^2} e^{-\gamma_n z^2},
$$

Cylindrical GEM Light-front Hamiltonian (BLFQ)

$$
H_{\text{eff}} = \frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x} + \kappa^4 \vec{\zeta}_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \partial_x (x(1 - x) \partial_x) - \frac{C_F 4 \pi \alpha_s(Q^2)}{Q^2} \bar{u}_{s'}(k') \gamma_{\mu} u_s(k) \bar{v}_{\bar{s}}(\bar{k}) \gamma^{\mu} v_{\bar{s}'}(\bar{k}').
$$

Basis functions (HO & power-law)

$$
\phi_{nm}(\vec{q}_{\perp};b) = b^{-1} \sqrt{\frac{4\pi n!}{(n+|m|)!}} \left(\frac{q_{\perp}}{b}\right)^{|m|} \exp(-q_{\perp}^2/(2b^2)) L_n^{|m|}(q_{\perp}^2/b^2) \exp(im\theta_q),
$$

$$
\chi_l(x;\alpha,\beta) = \sqrt{4\pi(2l+\alpha+\beta+1)} \sqrt{\frac{\Gamma(l+1)\Gamma(l+\alpha+\beta+1)}{\Gamma(l+\alpha+1)\Gamma(l+\beta+1)}} \quad x_2^{\beta}(1-x)^{\frac{\alpha}{2}}P_l^{(\alpha,\beta)}
$$

- —> Practically, it is easy
- —> Containing kinematic operators.

<> By definition, the results obtained from good or bad currents are the same.

Problem of restoring the covariance

<> The basic idea: the observables are computed with good current. *J*+

—> Practically, it is not easy

 —> Minus current >> nontrivial dynamics

- <> People claim the obtained results are different.
	- —> Fock space truncation
	- —> Zero-mode contribution

J−

$M = M_0 + V$ Interaction is added to mass Casimir operator

Noninteracting quark and antiquark

$$
\langle I, P, s, s_z \rangle = \sum_{s} \int d^3 p \, |M_0, P_0, s_0, s_{0z} \rangle \, \delta^3 (P - P_0) \delta_{ss_0} \Psi_M(M_0)
$$

Meson wave function

 $\vert M \vert$

Eigenvalue equation

• How to add the interaction to the noninteracting basis

LFQM: non-interacting quark basis

- In general, the quark bound inside a hadron is off-shell.
- In light-front BS model:

$$
(\lambda - M_0) \Psi_M(M_0, s_z) = \sum_s \int d^3 p'_0 \langle M_0, s_z | V^s | M'_0, s'_z \rangle \Psi_M(M'_0, s'_z)
$$

$$
|P_1, P_2, S_1, S_2\rangle = |P_1, S_1\rangle \otimes |P_2, S_2\rangle
$$
 $P^{\mu} = P_1^{\mu} + P_2^{\mu}$

Bakamjian-Thomas construction

[Adv. Nucl. Phys. 20, 225 (1991)]

$$
S = S_{on} + S_{inst} + S_{z.m.}
$$

• But, there is another (easier) way.

Decay constants: various currents and polarizations 45

 $\langle 0|\,\bar q \gamma^\mu\gamma_5 q\,|{\rm P}(P)\rangle\;=\;if_{\rm P}P^\mu,$ $\langle 0 | \bar{q} \gamma^{\mu} q | V(P, J_z) \rangle = f_V M \epsilon^{\mu} (J_z),$ $\langle 0|\bar q \sigma^{\mu\nu} q|V(P,J_z)\rangle = i f_V^T \left[\epsilon^\mu(J_z) P^\nu - \epsilon^\nu(J_z) P^\mu\right],$

$$
\mathcal{F} \;=\; \sqrt{6} \int_0^1 \mathrm{d}x \int \frac{\mathrm{d}^2\mathbf{k}_\perp}{16\pi^3} \;\frac{\phi(x,\mathbf{k}_\perp)}{\sqrt{m^2+\mathbf{k}_\perp^2}} \;\mathcal{O}(x,\mathbf{k}_\perp),
$$

Transverse momentum dependence 46

$$
\widehat{O_P} - \widehat{O_P}^+ = \frac{(m_2 - m_1)M_0}{(P_\perp^2 + M_0^2)}(-2)
$$

 $P^{-} - P^{+} = -2P_{z}$

The difference

Bad and good currents

Different polarizations 48

The difference

$$
\mathcal{O}_V(0) - \mathcal{O}_V(+1) = \frac{2}{D_0}(k_{\perp}^2 - 2k_z^2)
$$

Degree of anisotropy:

(*a*) (*b*)

$$
\varepsilon = \frac{2k_z^2}{k_\perp^2} - 1
$$

Key ingredient:

 $M \rightarrow M_0(x, k_1)$

LFWFs in nuclear matter

- EMC effect: nuclear modification of nucleon structure function. \overline{O}
- \bigcirc

Effective light-quark mass is smaller in nuclear medium: [Quark-meson coupling]

In-medium decay constant. In-medium distribution amplitude.

Summary

Summary

- Nonperturbative effect is a central issue in hadron physics.
- o Integral part of hadron physics:
	- Experiment, phenomenology, theory
- Constructing hadrons as relativistic bound states still posses a challenge. Model can cover the low-energy and high-energy processes.
- o Increase an accuracy of the model of hadrons and get a consistency.
- Our recent approaches include:
	- Gaussian expansion method
	- Light-front quark model

Let's discuss more!

Thank you!

In-medium LFWFs

Quark-Meson Coupling Model (Part 1)

Relativistic mean-field model

$$
\mathcal{L}_{\text{QMC}} = \mathcal{L}_{\text{nucleon}} + \mathcal{L}_{\text{meson}} + \mathcal{L}_{\text{int}},
$$

$$
\mathcal{L}_{\text{int}} = \tilde{g}_{\sigma}^{N}(\hat{\sigma})\bar{\psi}\psi\hat{\sigma} - g_{\omega}^{N}\hat{\omega}^{\mu}\bar{\psi}\gamma_{\mu}\psi,
$$

$$
\mathcal{L} = \bar{\psi}[i\vec{\phi} - m_{N}^{*}(\hat{\sigma}) - g_{\omega}^{N}\hat{\omega}^{\mu}\gamma_{\mu}]\psi + \mathcal{L}_{\text{meson}},
$$

$$
m_{N}^{*}(\hat{\sigma}) = m_{N} - \tilde{g}_{\sigma}^{N}(\hat{\sigma})\hat{\sigma}.
$$

$$
\tilde{g}_{\sigma}^{N}(\sigma) = g_{\sigma}^{N}C_{N}(\sigma), \quad C_{N}(\sigma) = \frac{S_{N}(\sigma)}{S_{N}(\sigma = 0)}.
$$

=> The quark-meson coupling

$$
g_{\sigma}^N = \tilde{g}_{\sigma}^N(\sigma = 0) = 3g_{\sigma}^q S_N(\sigma = 0),
$$

$$
g_{\omega}^N = 3g_{\omega}^q,
$$

=> Vector and scalar meson fields

$$
\omega = \frac{g_{\omega}^N \rho}{m_{\omega}^2}, \qquad \sigma = \frac{g_{\sigma}^N \rho_s}{m_{\sigma}^2} C_N(\sigma),
$$

=> Vector and scalar density

$$
\rho = \frac{4}{(2\pi)^3} \int d^3 \mathbf{k} \Theta(k_F - k) = \frac{2k_F^3}{3\pi^2},
$$

$$
\rho_s = \frac{4}{(2\pi)^3} \int d^3 \mathbf{k} \Theta(k_F - k) \frac{m_N^*(\sigma)}{\sqrt{m_N^{*2}(\sigma) + k^2}},
$$

=> Total energy per nucleon

$$
\frac{E_{\text{tot}}}{A} = \frac{1}{\rho} \left[\frac{4}{(2\pi)^3} \int d^3 \mathbf{k} \Theta(k_F - k) \sqrt{m_N^{*2}(\sigma) + k^2} + \frac{1}{2} g_\sigma^N C_N(\sigma) \sigma \rho_s + \frac{1}{2} g_\omega^N \omega \rho \right].
$$

Quark-Meson Coupling Model (Part 2) 56

MIT bag model \bigcirc

$$
V^q_\sigma = g^q_\sigma \sigma, \qquad V^q_\omega = g^q_\omega \omega,
$$

=> Scalar polarizability

$$
S_N(\sigma) = \int_0^{R^*} d^3 \mathbf{r} \bar{\psi}(r) \psi(r), \quad = \frac{\Omega_q^* / 2 + m_q^* R^* (\Omega_q^* - 1)}{\Omega_q^* (\Omega_q^* - 1) + m_q^* R^* / 2}.
$$

=> Quark EoM in the presence of meson mean-fields

$$
[i\mathbf{\vec{\phi}} - (m_q - V_{\sigma}^q) \mp \gamma^0 V_{\omega}^q] \begin{pmatrix} \Psi_q(z) \\ \Psi_{\bar{q}}(z) \end{pmatrix} = 0,
$$

\n
$$
[i\mathbf{\vec{\phi}} - m_Q] \begin{pmatrix} \Psi_Q(z) \\ \Psi_{\bar{Q}}(z) \end{pmatrix} = 0,
$$

=> Nucleon mass & radius

$$
m_N^*(\sigma) = \frac{3\Omega_q^* - Z_N}{R^*} + \frac{4\pi R^{*3}}{3}B, \qquad \frac{\mathrm{d}m_N^*(R^*)}{\mathrm{d}R^*} \bigg|_{R^* = R_N^*} = 0,
$$

=> Static solution for the ground state quark

$$
\psi(z)=\psi(r)\exp\{-i\varepsilon^*t/R^*\},
$$

$$
\psi(z)=\frac{Ne^{-ie^{*}t/R^{*}}}{\sqrt{4\pi}}\begin{pmatrix}j_{0}(x_{q}^{*}r/R^{*})\\i\beta_{q}^{*}j_{1}(x_{q}^{*}r/R^{*})\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}}\end{pmatrix}\chi_{m},
$$

$$
\begin{pmatrix} \varepsilon_q^* \\ \varepsilon_{\bar{q}}^* \end{pmatrix} = \Omega_q^* \pm R^* V_\omega^q, \qquad \Omega_q^* = \sqrt{x_q^{*2} + (m_q^* R^*)^2},
$$

 $\beta_q^* = \sqrt{\frac{\Omega_q^* - m_q^* R^*}{\Omega_q^* + m_q^* R^*}}.$ $j_0(x_q^*) = \beta_q^* j_1(x_q^*),$

Meson structure & property in medium 57

- Modified quark properties => The light quark effective mass is modified by scalar potential $m_q^* = m_q - V_o^q$ => The light quark energy is modified by vector potential $E_q^* = E_q + V_\omega^q$ and $E_{\bar{q}}^* = E_{\bar{q}} - V_\omega^q$
- The total energy of meson, \bigcirc

$$
P^{*0} = \begin{cases} E_M^*, & \text{for } (q\bar{q}), \\ E_M^* + V_\omega^q, & \text{for } (q\bar{Q}), \\ E_M^* - V_\omega^q, & \text{for } (Q\bar{q}), \end{cases}
$$

vector potential only appear for unequal quark mass.

Momentum fraction x is also modified \overline{O} => For equal quark mass,

$$
x \to \tilde{x}^* = \frac{p_q^{*+} + V_\omega^q}{P^{*+}} = x^* + \frac{V_\omega^q}{P^{*+}},
$$

The decay constant for equal quark mass only depends on scalar potential

$$
f_{\mathbf{M}}^* = 2\sqrt{6} \int_{-\frac{V_{\omega}^q}{P^{*+}}}^{\frac{V_{\omega}^q}{P^{*+}}} dx^* \int \frac{d^2 \mathbf{k}_{\perp}}{2(2\pi)^3} \frac{\Phi(\tilde{x}^*, \mathbf{k}_{\perp})}{\sqrt{A(\tilde{x}^*)^2 + \mathbf{k}_{\perp}^2}} \mathcal{O}_{\mathbf{M}}(\tilde{x}^*, \mathbf{k}_{\perp})
$$

$$
f_{\mathbf{M}}^* = 2\sqrt{6} \int_0^1 d\tilde{\mathbf{x}}^* \int \frac{d^2 \mathbf{k}_{\perp}}{2(2\pi)^3} \frac{\Phi(\tilde{\mathbf{x}}^*, \mathbf{k}_{\perp})}{\sqrt{A(\tilde{\mathbf{x}}^*)^2 + \mathbf{k}_{\perp}^2}} \mathcal{O}_{\mathbf{M}}(\tilde{\mathbf{x}}^*, \mathbf{k}_{\perp})
$$

LFQM for meson properties in free space 58

Mesons in free space, we adopt the LFQM => Choi & Ji [PRD59, 074015 (1999)]

In this model, the meson mass and

The quark mass and β parameters are fixed in free space.

 \Rightarrow The β parameters are assumed to be the same in medium.

decay constant in free space

=> reasonable agreement with data

MIT Bag parameter

The nucleon mass in Bag model

$$
m_N^*(\sigma) = \frac{3\Omega_q^* - Z_N}{R^*} + \frac{4\pi R^{*3}}{3}B,
$$

and minimized at

$$
\left.\frac{\mathrm{d}m_N^*(R^*)}{\mathrm{d}R^*}\right|_{R^*=R_N^*}=0,
$$

- Bag parameters are fitted to \overline{O} => Nucleon mass: 939 MeV => Nucleon radius: 0.8 fm
- If we use the constituent quark, the bag parameters are not far different.

Larger quark mass \bigcirc

Nuclear Equation of State (EoS)

- The quark-meson couplings are \bigcirc fitted to
	- => Binding energy -15.7 MeV
	- => At saturation density

- => Larger incompressibility K
- => Smaller effective nuclear mass
- => Similar scalar potential
- => Stronger vector potential

Ratio of in-medium decay constants

Pseudoscalar meson Vector meson

Pion decay constant is reduced significantly \overline{O} => Our result is consistent with previous BSA. => rather smaller compared to pionic atom experiment.

- Vector meson decay constant are nearly unmodified. \circ
- The rho meson decay constant is least reduced in \overline{O} medium. => Opposite ratio hierarchy

In-medium f_V^* / f_V decrease more slowly 62

Decay constant formula in LFQM \bigcirc

$$
\mathcal{F} = \sqrt{6} \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} \frac{\phi(x, \mathbf{k}_\perp)}{\sqrt{m^2 + \mathbf{k}_\perp^2}} \, \mathcal{O}(x, \mathbf{k}_\perp)
$$

$$
O_P^* = m_q^*,
$$

$$
O_V^* = m_q^* + \frac{2\mathbf{k}_\perp^2}{M_0^* + 2m_q^*}.
$$

- The second term increases in medium \overline{O} => competing with the first term.
- Without the second term, the behavior will be the same as those of pseudoscalar meson.

Effect of nuclear vector potential 63

 $f_{\rm M}^* = 2\sqrt{6} \int_0^1 d\tilde{x}^* \int \frac{d^2 \mathbf{k}_{\perp}}{2(2\pi)^3} \left(1 \pm \frac{V_{\omega}^q}{P^{*+}}\right) \times \frac{\Phi(\tilde{x})}{\sqrt{A(\tilde{x})^2}}$

The V^q_ω effect only appear for mesons with different quark content.

The difference due to V^q_ω effect is getting smaller for heavier quark.

$$
\frac{(\tilde{x}^*, \mathbf{k}_{\perp})}{(\tilde{x}^*)^2 + \mathbf{k}_{\perp}^2} \mathcal{O}_{\mathbf{M}}(\tilde{x}^*, \mathbf{k}_{\perp}).
$$

-
-

$In medium DAs of π and K mesons$

Lattice data, Phys. Rev. Lett. 129, 132001 (2022). Light quark (u or d) carries momentum fraction *x*.

- In free space, the pion DA is consistent \bigcirc with Lattice data.
- The pion DA becomes flatten as the nuclear density increases (quark mass decreases).

1.5 1.0 $\phi_K^*(x)$ 0.5 $\rho/\rho_0 = 0.00$ $\rho/\rho_0 = 1.00$ $\rho/\rho_0 = 0.25$ Asymptotic 1.111111 Lattice $\rho/\rho_0 = 0.50$ $0.0 \cdot$ 0.0 0.2 0.4 0.6 0.8 1.0 X

-
- The Kaon DA $(x > 0.5)$ disagrees with the lattice data \overline{O} —> Possible cause: using a simple Gaussian WF or SU(3) flavor symmetry breaking.

The Kaon DA decreases much faster near \overline{O} $x = m_1/(m_1 + m_2)$

In-medium DAs of ρ and K^* mesons 65

- While the ρ DA is similar to Asymptotic result, \bigcirc the K^* DA is slightly shifted to the smaller x.
- The ρ and K^* DAs are moderately modified in medium.

Moderate modification of vector meson DAs \overline{O} ==> the small reduction of decay constants.

In-medium DAs of ρ and K^* mesons 66

- While the ρ DA is similar to Asymptotic result, \bigcirc the K^* DA is slightly shifted to the smaller x.
- The ρ and K^* DAs are moderately modified in medium.

Moderate modification of vector meson DAs \overline{O} ==> the small reduction of decay constants.

In-medium DAs of heavy-light mesons 67

o The DAs of heavy-light mesons are nearly unmodified in medium.

Difference of DAs in medium & in free space 68

 \rightarrow Maximum reduction and enchantments & Smearing of the peak near $x = 1$.

