Time-ordered perturbation theory calculation of the

axial anomaly in QED;,4 in LFD

Bailing Ma

Apr. 12, 2024

group meeting NCSU

1/29



o It is often thought that the simple vacuum structure that comes with
the light-front quantization is incompatible with the various nontrivial
vacuum phenomena in low-energy hadron physics, for example, the
axial anomaly.

o It is well known that regularization procedure in quantum field theory
sometimes cannot preserve all of the classical symmetries, so in a
quantized theory, the axial vector Ward identity has to be sacrificed in
order to preserve the vector one, although on the classical level both
are preserved.

@ Axial anomaly in the Schwinger model may be understood as
stemming from the divergent fermion loop integral, the same which
gives the photon its mass.

1C-R. Jiand S. -J. Rey, Light front view of the axial anomaly, Phys. Rev. D53,
5815 (1996)
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@ Last time | talked about the time-ordered perturbation theory
calculation of the axial anomaly in the interpolation form of dynamics.

@ This time I'm going to talk about the light-front side of the same
calculation.
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Axial anomaly

@ The axial anomaly in QED, stems from the two-point function
T (x = y) =< T (L) (y)) > (1)

@ The Feynman diagram relevant for the axial anomaly in two
dimensions is shown below

TN

k—¢

A naively regularized result will not fulfill the correct Ward Identity (WI)
whereas the proper dimensional or Pauli-Villars regularized Feynman
integral will do so.
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Dimensional regularization

@ Before we go into the LFD calculation, let us review how this
calculation is traditionally done in the manifestly covariant manner.

o Due to the relationship v#4® = €"¥~, in two dimensions, it is
sufficient to calculate T#” in order to obtain ij.

T (q)
e e g
r)2[k2 — m? 1 ic] [(k — q) — m2 + ie]
iy / d?k (kaks — kaqp) Tr [v"7°7"7?] + m? Tr [y'4"]
212 [R—miidlk—qP—m+iq

2
—/e/dx/dk

. (kaks — kaqg) Tr [V yP] + m? Tr [y#y"]
[k2+2(x—1Dk-qg—(x—1)g2 —m?)*
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Divergent integral

There are three terms in Eq. (2), and we shall call them as

d%k kaks Tr [’y“'ya'y”fyﬁ]

pg N a2

I(l)(q) = ie ) DD, ) (3)
o [ d?k kaqsTr [v"9°"2"]

j2% — .2 B

/(2)(67) = / (2m)2 D1D, ’ “)

and

d?k m?Tr [ 4]
/54 =] 2/

where D; = k? — m? + ie and Dy = (k — q)?> — m? + ie. We see that
I(’ﬁ(q) is (naively) logarithmically divergent while I(’g)/(q) and I(‘g(q) are
not divergent.
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Naive calculation

If one is being careless and shifts momentum normally in Eq. (2) as one
does with Feynman parametrization, one easily gets

TH(q) =ie? /1 dx/ ikz {[k = (x=1)gl, [k = (x = 1)g —qlg

x Tr [v Yy AP } +m*Tr [7“7”]} (K> — D?)?, (6)

where
A% = x(x —1)g® + m°. (7)

Going to the Euclidean momentum,

T (q 4%2/ dx/dzk,:—{[ gaBkE+x( 1)qaq5]
X Tr |y | + mPTr ]} (R + A% (8)
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Naive calculation, continued

This is

2 1

Tor(g) = — & X = Ddags Tr (1597 ] + m* Tr 5]
9 ar Jo x(x —1)g? + m?
e /1 5= 1)(29"q” — g q?) + g m?

27 Jo x(x —1)g%2 + m? ’

(9)

We see that the naive Feynman parametrization calculation misses the
anomaly term which should be present. In a divergent integral, one has to
be careful and shifting the momentum variable by a constant is not always
allowed.
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Correct dimensional regularization: refer

RIVISTA DEL NUQVO CIMENTO VOL 16, N & o

Overview on the Anomaly and Schwinger Term
in Two-Dimensional QED (*).

C. ApAM, R. A. BERTLMANN and P. HOFER

Instatut fir Theoretische Physik - Universitat Wien

(ricevuto il 4 Marzo 1993)

APPENDIX

Feynman integrals in » dimensions:

d"p 1 i(—m)"? I'(x—n/2)
AD Iy= ot o2 2Na n 2 2na—n/2
@m)" (p* + 2kp + M?) @) T(@) (M — k)
d"p D,
A2 IL=|———t———— = — kI,
(A2) " @en" (172+ 2kp+M2)“ ©to

d*p DuD 1 M-
A3 I, = —— =k k4 g ———— ).
A3 = | Gy 7 g 2ip £y~ o\ Bkt 59w e
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—(x—1)g%> — m?* — (x — 1)?°q?
% <(X—1)2qa%+ga5 ( ) - ( )q

x Tr [V”va’v”vﬁ }
_ & /1 5 X D?0aqs Tr 17779777
47T 0
2 1

x(x —1)g%> + m?

e
— d
+ 47 0 X2

1
—8ap Tr [7“7“7”7’3 } : (10)
According to the n-dimensional formula

gap Tr [v“v“v“vﬁ ] =2(2—n)g"". (11)
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Thus,

(@)
=— e 1 dx (x = 1)2qaqs Tr [1"1°7"77] ejg#u
4m Jo x(x —1)q? + m? o
2 1 2 v v.2 5
e (x=1)°(29"q" —g""q*) | e
T g 12
20 Jo O xx—D@+m 2t (12)

The other two terms can be calculated without difficulty as
v @ [t (x=1)daqsTr [y P
2)( ) e X 2 2
( 47 x(x—1)g>+m
e [t (x-1)(2¢"¢" — "¢’

- __ d 1
2 0 X X(X — 1)q2 + m2 ( 3)
and
I4(q / m* Tr ["4"]
x(x —1)q? + m?2

gh’m
/ x(x — D)@+ m? (14)



Combining the three pieces, we get

2 1 v v 2 Va2 2
TH(q) = — € / d x(x —1)(2¢"q" — g""q°) + g""'m €
0

& g (15
27 x(x —1)g? + m? + mE (15)

which satisfies gauge invariance

T(q) = T(q°) (ngy - g“”) (16)

Then the vector—axial vector two point function can be obtained by
TMV _ €V>‘ TM.
5 = A

m0) = T (L2 - gt). (17)

It fulfils the vector current conservation,

v v q“q
4 T2 (q) = T(6?)™q, ( 2 —gs) _o, (18)

and the anomalous axial vector current,

v y q“q Y
4 T2 (@) = T(?) ™ a, ( b g;) —_T(@)qer. (19)




Pauli-Villars regularization

Another, equally valid way of dealing with the divergent integral is
Pauli-Villars regularization. It is defined as

Tg\l;(q) = T/“/(qa m) - Tﬂy(q7/\PV)|/\pV—>oo' (20)

In the previous, naive calculation, we obtained

2 1 v v 2 Va2
— 1) (2gtqg¥ — oM B
T (q, m) = _e/ dxX(X )(29"q g2 q )2+g m . (21)
27 Jo x(x —1)g*> + m
Thus,
&2
TH(q, Apv) [ Apy =00 = %g‘“’. (22)
Therefore,
2 1 v v 2 V a2 2
e x(x —1)(2g*q"¥ — g + g"m e
T (q) = — & X )(29"q é; q)2 g "
21 Jo x(x—1)g>+m 27
(23)

same as the dimensionally regularized result.
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LFD calculation of the axial anomaly Feynman diagram

For the LFD calculation, we use Pauli-Villars regularization

Tll;\l;(q) = T'w/(qa m) - T“V(q7APV)|/\pV—>oo- (24)

Starting from Egs. (3), (4) and (5), we write them in the light-front
coordinates.

;ux + —
I5(a) = 7 / dk / dk

% kak[—} Tr [’Y”’YQ'YV’YB] . (25)
[2kthk— —m2+ic[2(k — q)F (k— q)~ — m2 + ic]’

15 (q) = _ e / dk* / dk~

kaqs Tr [y +7] _
[2k+k* —m2+iel[2(k —q)t(k—q) — m? + i€’
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and
/({;'3 / dk™ / dk™
m*Tr [y"9"]

“Rktk——m2tid 2k — q)F(k—q)- —m? +id’

There is only one time-ordered diagram:

(27)

-
k
% : 4
Vk 2 ¢
+ m-E i—
4 >0 ® xgn
Y

9t-¢t>o
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The simplest term, I(‘;l)'(q) can be calculated easily as the following.

r 2
v e v_2 _
If5(a) =5 528" m /dk*/dk
1

“ Rkt —m? +id 2(k — q)F(k —q)- — m? + iq]

2,2 1
1
:gl“/e m / dx 5 >
2m Jox(x—1) (2 - 2 - @?)
2,2 1
~1
- | — (26)
2t Jo  x(x—=1)g>+m

in agreement with the covariant calculation, Eq. (14).
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Now, for the second term, I(’g(q) we can calculate as follows, applying
the trace of four gamma matrices formula.

ul/ + _
Ihy(q) = / dk / dk
kig” — gk - q+ g"k”

“Rktk——m2 tid 2k —q)F(k—q)- —m2 +id]’

and now we can write out and calculate each and every component of

I(zy(q) as the following

T + -
I (@) =— 5 / dk / dk
2kt qt

[2k+k* —m2+iel[2(k —q)t(k —q)~ — m? + €]

2
— & oatat d X
27 (qq)/o Xx(x—1)2+m2

1—x
/ S Fe Yt (30)

17/29

(29)




Other components are

+
2y (

and

Iy (a

/dk+/dk_

“—k-q+qtk” B
[2k+k— — m2 + /e] [2(k—q)t(k—q)" —m? +ie
(31)
27r2 /dk*/dk
kgt —k-q+q k" B
[2k+k* —m?2+ie][2(k — q)T(k—q)~ —m? +ie
(32)
)=—2ie7r22/dk+/dk
2k—q~
X Rktk— —m?+ i [2(k — q)t(k—q)~ — m2 +i]’ (33)
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Eq. (33) is exactly the calculation that was done in 2, where it was shown

that a naive calculation missing the LF zero mode does not give the
correct answer.

->x
k
? : 4
4k

2B. Bakker, M. DeWitt, C. -R. Ji, and Y. Mishchenko, Restoring the equivalence
between the light-front and manifestly covariant formalisms, Phys. Rev. D72, 076005
(2005)
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In our case here, because of equal mass in the two propagators, accounting for

the arc contribution is enough to obtain the correct answer. We get

o ie? _ n _
I (q9)=-— 4 dk dk

“Rkk— —mr iRk —q) (k —q) — m? + ie]

[A2
e

— g (=2mNat
4 (=2mi)q

1
X dx
/o 2k+2(k — q)* (LQ_L_CL>

-2 - . R i0
+%q—/dk+ lim / iRe™® d6 ¢ _
I R—o0 Jo 2k+2(k — q)*+ (Re)

—q 7 7/ { [XX—T;CI +m2]+ (Xl_l)}.

In which ) )
m 1-— 1
_ (1=x)q W1

x[x(x—=1)g2+m?]  x(x—1)g2+m?  x

(34)

(35)
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and

L |
:—/ dxx. (36)
0 X
Thus, the answer is
_ e 1 [t (1—-x)q° 1 1
@ (@="—da4q q2/0 dx{x(xl)q2+m2+x_x}
e ! (1-x)
SR /dex(x_l)q2+m2. (37)

Looking at all four components of the calculation of l(’g(q) we see that

the answer agrees with the result from the covariant way, Eq. (13).
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Now, let us turn to the divergent term, I(“lg(q)

,LLl/ + —
I (a) / dk / dk

2kI K — ghv k?
[2k+k— —m?+ie][2(k —q)t(k—q)” — m?>+ i€’

(38)

In terms of LF components, again the ++ component can be calculated

easily
/++ / dk* / dk~
2kt kT

“ Rktk— —m2 + i [2(k — q)F(k — q)— — m? + ie]
2

— e2(2++)/d X
Tt Xx(x—l)2—&—m2

e? (1-x)?
—— (2 + 7t d :
27r( 749 )/0 Xx(x—l)q2+m2
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The +— and —4 components are again zeros

—+ —
14 ( / dk / dk

2ktk™ — k?

X 2k k- — m2+ic[2(k — q)t(k —q)- —m2 +id (40)
Iy ( /dk*/dk
2k~ k* — k2
ok v iRk k- —m i o
and
lay (@) /dk*/dk‘
2k k™ o
ik —m ARk —a k- —mrid )
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Eq. (42) again if calculated naively, will lead to incorrect result.

the flying pole paper, we calculate Eq. (42) in a similar way.
ie? N
I” dk™ dk_
/ / D1D2

Dy = 2kTk™ — m® + ie,

where

Dy =2(k—q)T(k—q)” — m?+ie.

Following

(45)

We will utilize the "asymptotic method” discussed in the flying pole paper.

When k= — 0o and kT — 0,

ie? (k—)? ie? k—
Va1 = — | dk™ [ dk™ =— dk* | dk——.
2 wz/ / Dy2(—q+ )k~ 27r2q+/ / D
(46)
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Taking derivative with respect to m? gives
0

— + -
WVasyl — 27I'2q+ /dk / dk 72

_ e /dk+ s In (m? = 2kt kT)

T om2gt 4(k+)?
k—=—R
e 17T
—_— dk™ 47
2m2qgt / 4(k*)2’ (47)
where k¥ — 0. When k= — oo and kT — g7,
ie? _(k7)? ie? _k~
Vo = — | dk™ | dk = dk™ [ dk™=—. 48
V2T / / D.2qtk—  2m2q+ / / D> (48)

Taking derivative with respect to m® gives

d ie? LRk
WVQS}Q*W/(#( /;de Fg

+_ m?2 _ _ R
. ie? /dk+ _g(kf(,kqﬂfk—)q,; — +1In (m —2(k" —q" )k~ —q ))
T 2m2gt 4kt —gt)2

k—=—R
ie? i
= kKt ————— 4
P /d ik g (49)

where kKt — g™ — 0.
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So actually,
Vasyl + Vasy2 =0. (50)

/(I;(q) |: (q) - asyl VasyZ] + Vasyl + Vasy2

a2 -t
= 71'2 72(]'*' /dk /dk k D1 D, + vasyl + Vasy2

ie? 1 —k
= dkt | dk~ ki
772 2q+ / / D1D2

k=g (1— k™
= /dk+/dk_ q /q ) + Vasyl + Vasy2- (51)
D1 D,

+
) + Vasyl + Vasy2

Now the power of k= has been reduced, and the k™ integration is exactly
as in Eq. (34). Thus, we obtain

__ e2 ! 1—x)?
Iy (@) =-—a°q /de 1=
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Combining the results from all four components calculation of /(lﬁ(q) and

adding it to the results of l(’;';(q) and l(’g';(q) we get

v e [T x(x—1)(2¢"q" — g"'q*) +g"'m’
T (g, m) = — 277/0 dx Y L (52)
Repeating the calculations for m = Apy/, we get
» e /l x(x = 1)(2¢"q" — 8" ¢?) + g"' N3,
T (q,/\p\/) = 5 0 dx X(X — 1)q2 i /\%V . (53)
Taking Apy — o0,
&2
T#V(qv APV)|/\Pv—>OO = ggl“’. (54)

Thus,

Tﬁ\V/(Q) = T,U'V(q? m) - Tl“j(q7/\PV)|/\p\/~>oo
e’ /1 5D e — g ) + g m? e,
= —— [x - .
27 Jo x(x —1)g% + m? 2n




@ From this we see that LFD calculation gives the same result agreeing
with the manifestly covariant calculations.

@ The anomaly can be understood as coming from the divergent
integral in the I(_l)_(q) computation contributed from the LF zero
mode ~ d(kT) and ~ §(qgT — k™).

@ Because of gauge invariance g, T#” = 0, we can relate e.g.,

T = —Zf T—~. Thus, by properly calculating the T~
component, we obtain the correct axial anomaly term %g”” which
manifests only in the TT~ and T~ components in LFD due to the
metric, gt =g~ =0.
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Thank you for your attention!
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