

Bringing Science Solutions to the World

Algebraic Methods for Efficient Hamiltonian Simulation via Quantum Computers

Efekan Kökcü

Lawrence Berkeley National Laboratory

ekokcu@lbl.gov

Outline

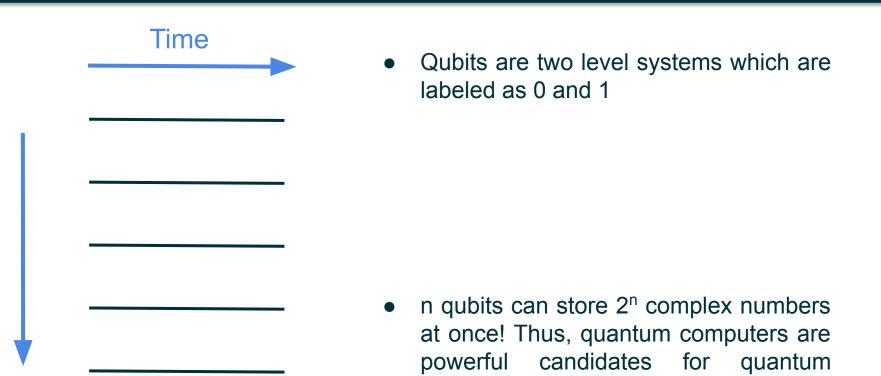
- Quantum computing
 - Qubits and quantum gates
- Quantum simulation of spin1/2 systems via quantum computers
 - Simulation overall: state prep, time evolution, measurement
 - Time evolution: Trotter-Suzuki approach
- Beyond spin 1/2 systems:
 - Fermions Bosons
- Algebraic Compression of Free Fermionic Evolution

Outline

- Quantum computing
 - Qubits and quantum gates
- Quantum simulation of spin1/2 systems via quantum computers
 - Simulation overall: state prep, time evolution, measurement
 - Time evolution: Trotter-Suzuki approach
- Beyond spin 1/2 systems:
 - Fermions Bosons
- Algebraic Compression of Free Fermionic Evolution

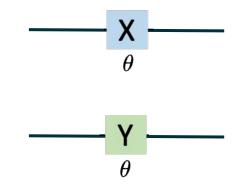
Quantum Computing: Qubits

Qubits



simulation

• Commonly, 1-qubit gates are defined as exponentials of Pauli matrices



• Commonly, 1-qubit gates are defined as exponentials of Pauli matrices

• Any 1-qubit unitary can be written as follows:

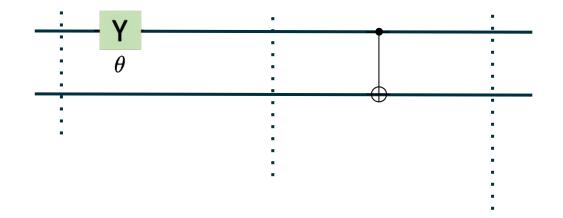
$$- \begin{array}{c} \mathbf{X} - \mathbf{Y} - \mathbf{Z} - \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{array} \qquad - \begin{array}{c} \mathbf{X} - \mathbf{Z} - \mathbf{X} - \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{array}$$

• Controlled not gate is defined as follows:

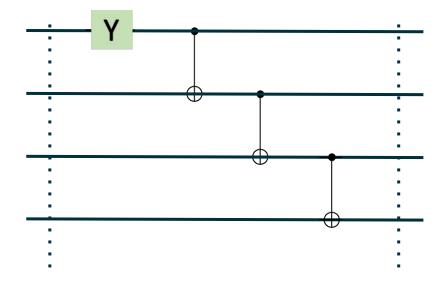


- It flips the target qubit if the control qubit is in 1 state
- Currently, these are more expensive and more noisy. In the fault tolerant era, the 1-q gates are going to be more expensive.

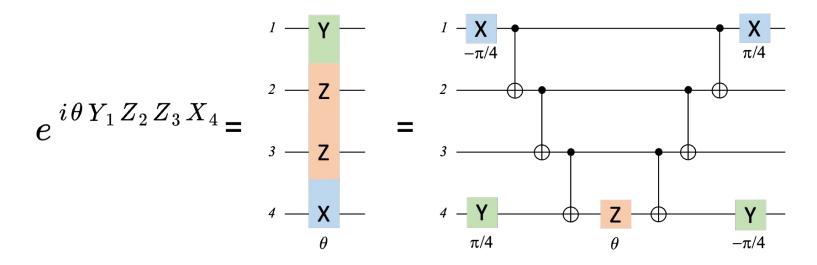
• Example: the following generates Bell state for



• Similarly, the GHZ state can be generated as follows:



 Using these gates, we can implement rotations of any tensor product of Pauli matrices



Outline

- Quantum computing
 - Qubits and quantum gates
- Quantum simulation of spin1/2 systems via quantum computers
 - Simulation overall: state prep, time evolution, measurement
 - Time evolution: Trotter-Suzuki approach
- Beyond spin 1/2 systems:
 - Fermions Bosons
- Algebraic Compression of Free Fermionic Evolution

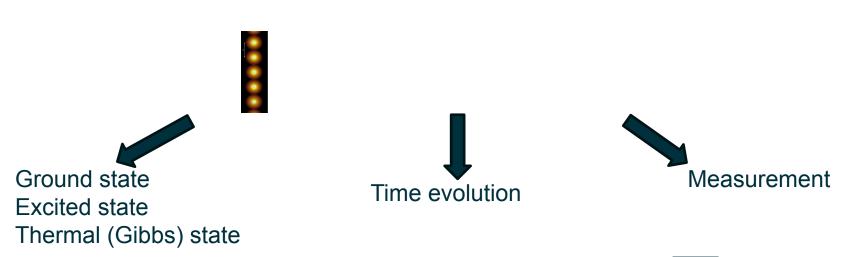
Quantum simulation of spin 1/2 systems

- To simulate physical models, one need to map physical degrees of freedom to the d.o.f. of the quantum computer
- For spin 1/2 systems, we can map as follows:

$$|0
angle \equiv |\!\uparrow
angle \qquad |1
angle \equiv |\!\downarrow
angle$$

• Then, each spin operator correspond to the same 1-q quantum gate (to a factor of 2)!

Quantum simulation via quantum computing



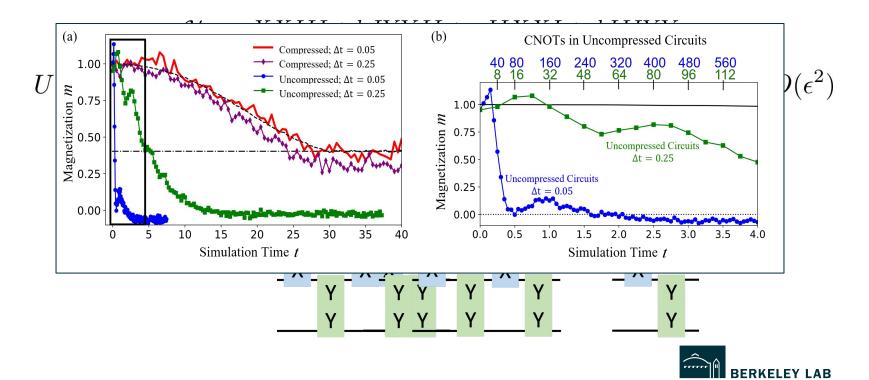
Time evolution: Trotter-Suzuki decomposition

• Consider Kitaev spin chain on 5 spins:

$$\mathcal{H} = a XXIII + b IYYII + c IIXXI + d IIIYY$$
$$U(t) = e^{-it\mathcal{H}} \neq e^{-ita XXIII} e^{-itb IYYII} e^{-itc IIXXI} e^{-itd IIIYY}$$

Time evolution: Trotter-Suzuki decomposition

• Consider Kitaev spin chain on 5 spins:

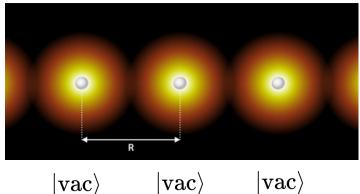


Outline

- Quantum computing
 - Qubits and quantum gates
- Quantum simulation of spin1/2 systems via quantum computers
 - Simulation overall: state prep, time evolution, measurement
 - Time evolution: Trotter-Suzuki approach
- Beyond spin 1/2 systems:
 - Fermions Bosons
- Algebraic Compression of Free Fermionic Evolution

Beyond spin 1/2 systems: Fermions

• Fermionic systems in condensed matter consist of the following states



$$|vac\rangle = |vac\rangle = |vac\rangle$$

 $c^{\dagger}|vac\rangle = c^{\dagger}|vac\rangle = c^{\dagger}|vac\rangle$

• These states can directly be mapped to qubits:

$$|0
angle\equiv|\mathrm{vac}
angle$$

$$|1
angle \equiv c^{\dagger}|\mathrm{vac}
angle$$

• One needs to make sure that the fermions generate a minus sign under exchange.

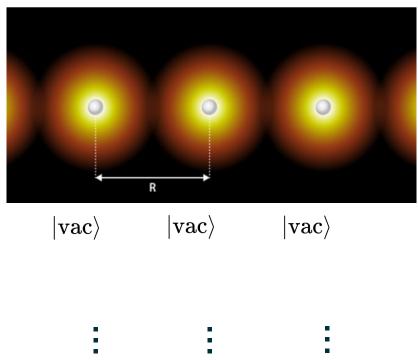
Beyond spin 1/2 systems: Fermions

• One example of these mappings is the Jordan-Wigner mapping:

• There are other mappings such as Bravyi-Kitaev, and generic ternary tree mappings [1,2]

[1] A. Miller et al (2023), PRX Quantum[2] Y. Liu et al (2025), IEEE Int. Symp. HPCA

Beyond spin 1/2 systems: Bosons

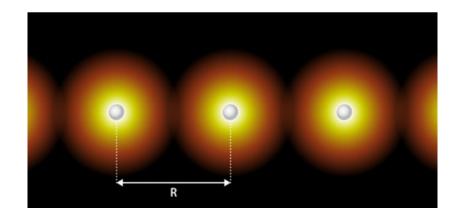


[1] R. Somma et al. Inter. Jour. Quant. Inf. 1.02 (2003): 189-206 [2] A. Miessen et al, PRR 3.4 (2021): 043212

- Boson modes can be seen as quantum harmonic oscillators.
- If truncated in N states, each boson mode can be mapped to N qubits (unary mapping) or log₂N qubits (binary mapping)
- Because the qubit operators commute, bosonic statistics is readily satisfied!

[3] N. Sawaya et al, npjQl 6.1 (2020): 49[4] B. Peng et al, Quant. Sci. Tech. 10.2 (2025):023002

Beyond spin 1/2 systems: Bosons



 Boson modes can be seen as quantum harmonic oscillators.

 Jordan-Lee-Preskill mapping maps each state to an n-qubit state, digitizing the field space.

[1] N. Klyco et al, PRA 99.5 (2019): 052335
[2] R. Ferrel et al, PRD 109.11 (2024): 114510
[3] S. P. Jordan, K. S. M. Lee, and J. Preskill (2011), [Quant. Inf. Comput.14,1014(2014)], 1112.4833

Outline

- Quantum computing
 - Qubits and quantum gates
- Quantum simulation of spin1/2 systems via quantum computers
 - Simulation overall: state prep, time evolution, measurement
 - Time evolution: Trotter-Suzuki approach
- Beyond spin 1/2 systems:
 - Fermions Bosons
- Algebraic Compression of Free Fermionic Evolution

Acknowledgements

Roel Van Beeumen Li LBNL

Lindsay Bassman Oftelie CNR Nano

E. Kökcü et al (2022), PRA 105(3), 032420

D. Camps et al (2022), SIAM, 43(3), 1084-1108.

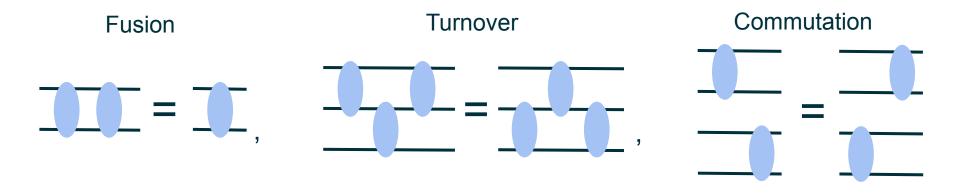
E. Kökcü et al (2023), arXiv:2303.09538

Wibe de Jong LBNL

Alexander Kemper NCSU

Algebraic Compression

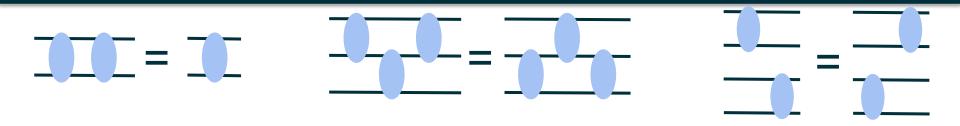
Consider quantum gates that satisfy the following relations:

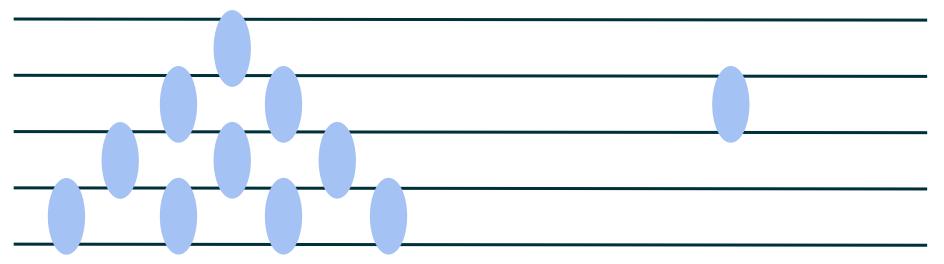


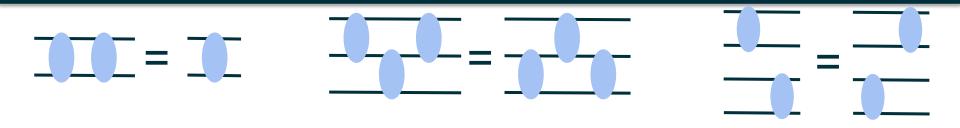
We call them **blocks**. Sequences of blocks can be simplified via algebraic compression [1-2]

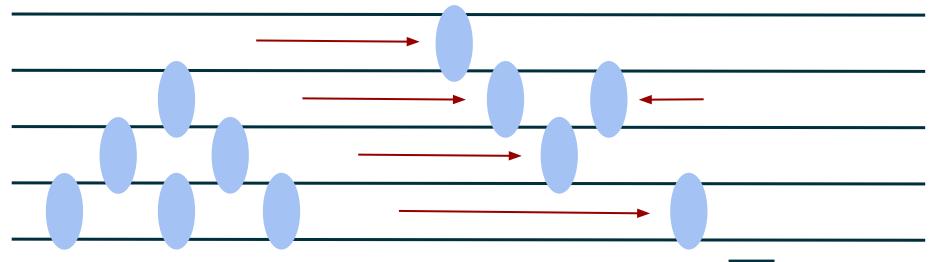
[1] E. Kökcü et al (2022), PRA 105(3), 032420

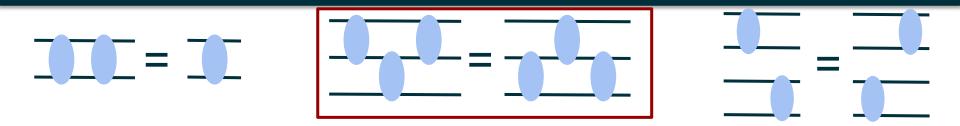
[2] D. Camps et al (2022), SIAM, 43(3), 1084-1108.

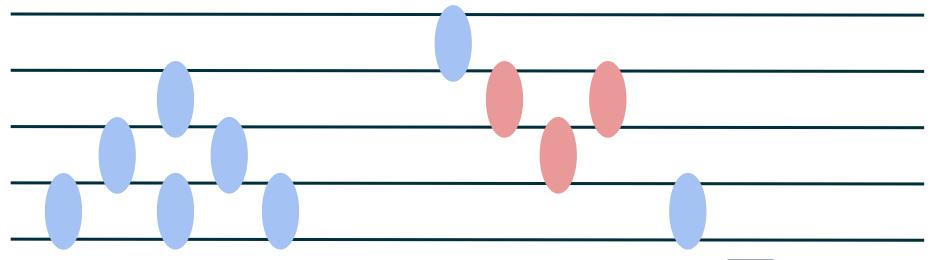


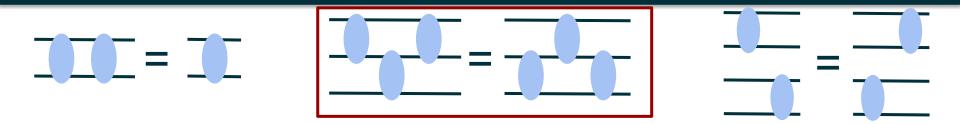


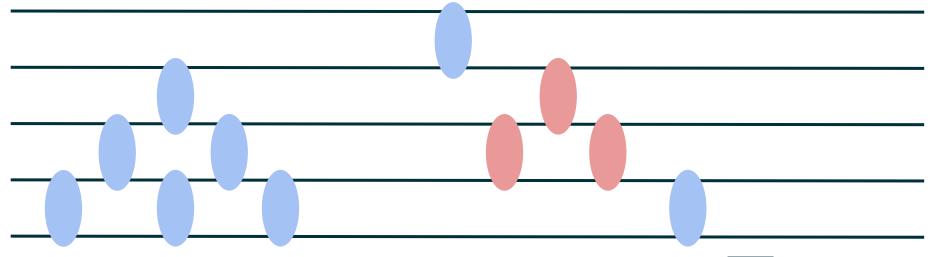


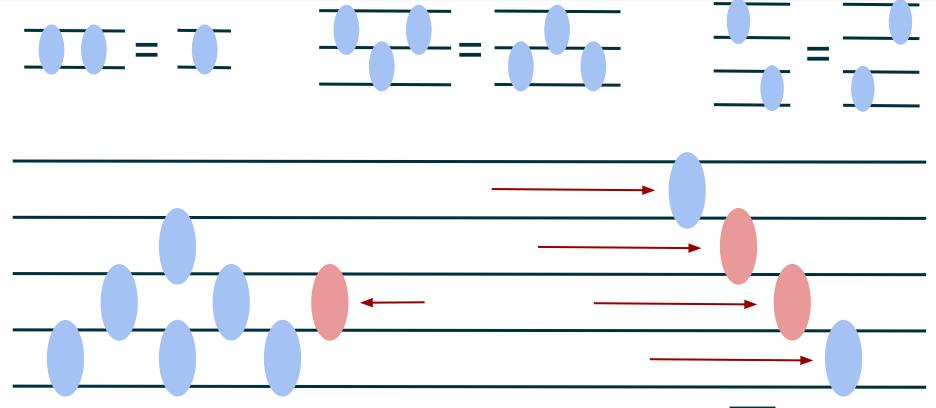


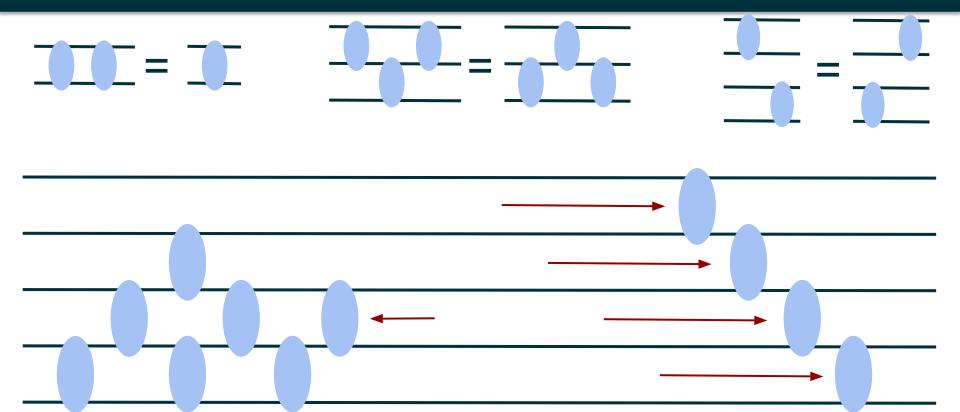


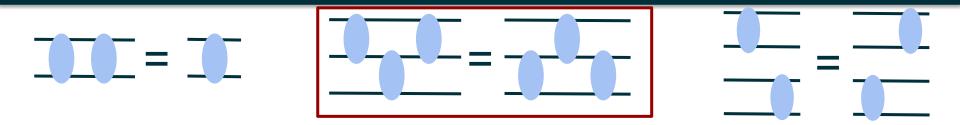


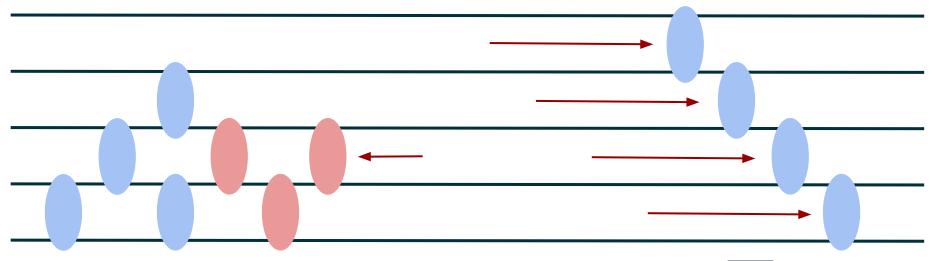


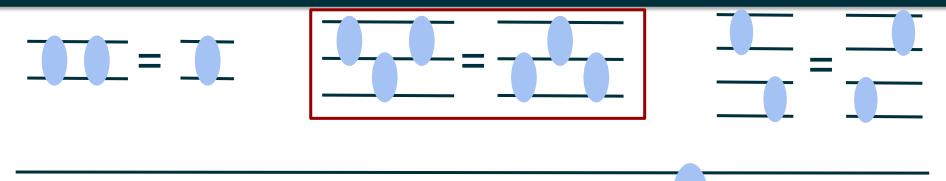


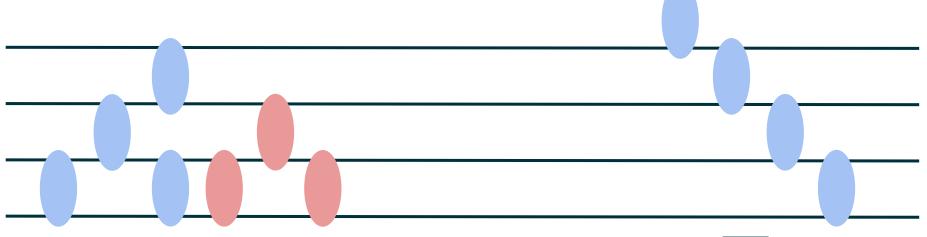


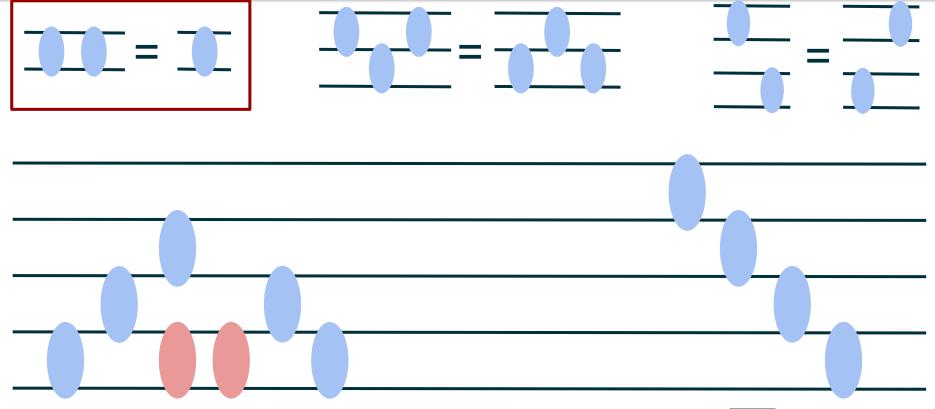


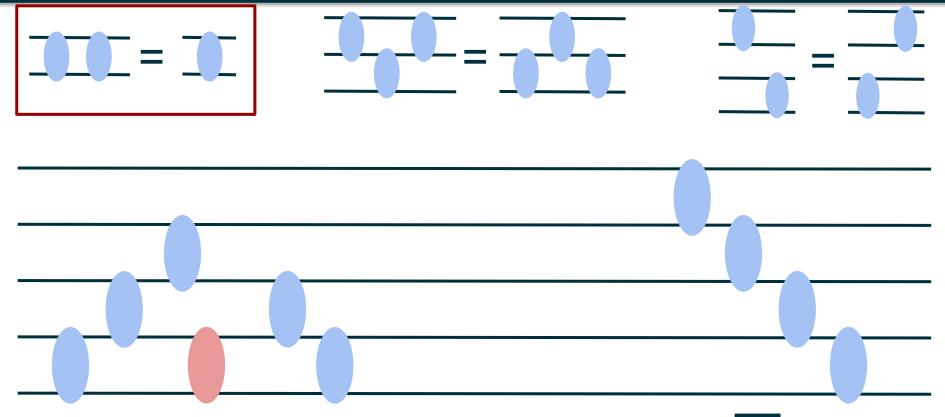


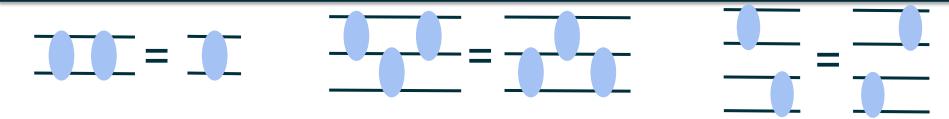


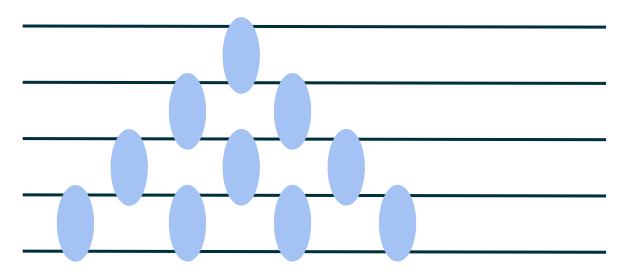




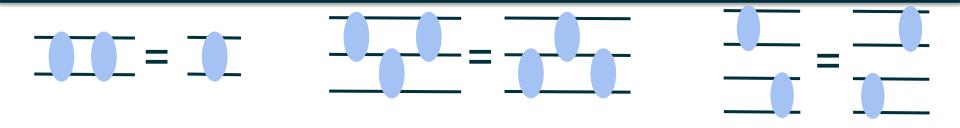


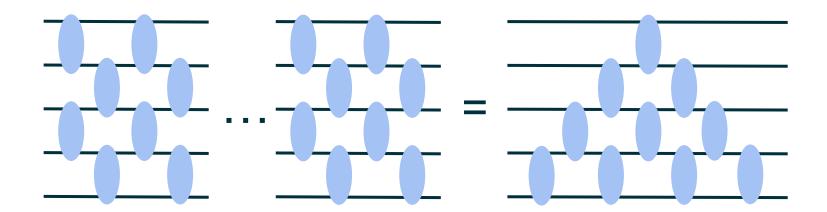




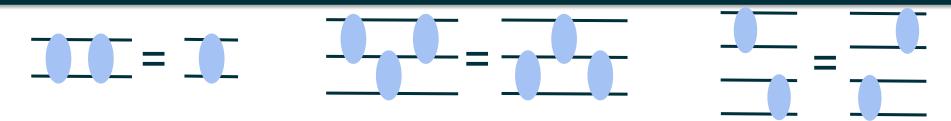


- Triangle can eat any other block!
- This allows us to reduce the number of gates significantly for certain models





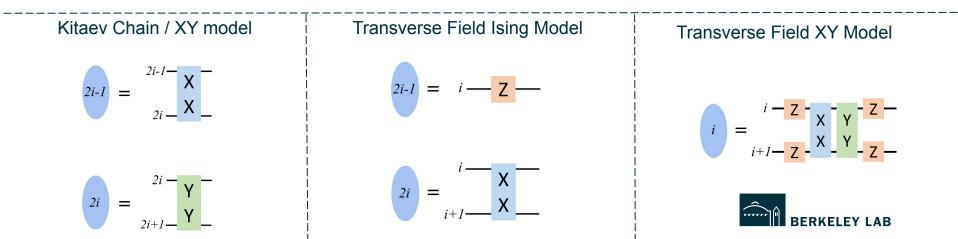
Free fermion models consist of blocks!



In [1-2], we show that the following models can be represented and compressed via the following blocks

[1] E. Kökcü et al (2022), PRA 105(3), 032420

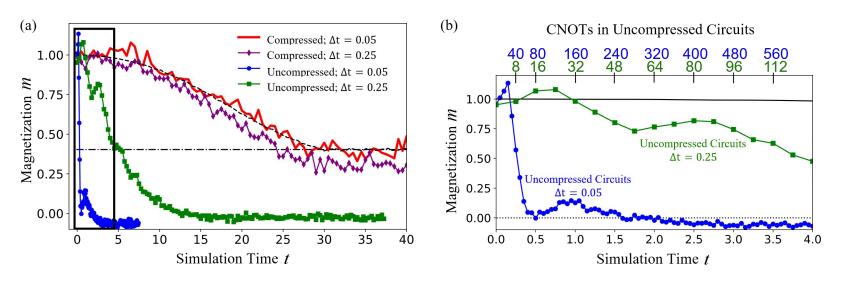
[2] D. Camps et al (2022), SIAM, 43(3), 1084-1108.



5-site Transverse Field Ising

$$\mathcal{H}_{ASP}(t) = J(t) \sum_{i=1}^{n-1} X_i X_{i+1} + h_z \sum_{i=1}^n Z_i \qquad \langle m(t) \rangle \equiv \frac{1}{n} \sum_i \sigma_i^z(t)$$

ibmq_brooklyn results:

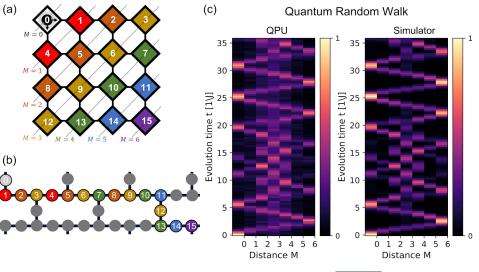


4x4 free tight binding model

We extend algebraic compression to free fermions with long range interactions as well, and simulate a 2-D 4x4 tight binding model on *ibmq_washington:* E. Kökcü et al (2023), arXiv:2303.09538



https://www.newscientist.com/article/2093356



Conclusions and outlook

- We introduced a method to compress time evolution of free fermionic models on any graph
- We are applying the same method to impurity models (in progress)

 We introduced a method to compress time evolution of free fermionic models on any graph

